Friday Hack Chat: Energy Harvesting

Think about an Internet-connected device that never needs charging, never plugs into an outlet, and will never run out of power. With just a small solar cell, an Internet of Thing module can run for decades. This is the promise of energy harvesting, and it opens the doors to a lot of interesting questions.

Joining us for this week’s Hack Chat will be [John Tillema], CTO and co-founder of TWTG. They’re working on removing batteries completely from the IoT equation. They have a small device that operates on just 200 lux — the same amount of light that can be found on a desktop. That’s a device that can connect to the Internet without batteries, wall warts, or the black magic wizardry of RF harvesting. How do you design a device that will run for a century? Are caps even rated for that? Are you really going to download firmware updates several decades down the line?

For this week’s Hack Chat, we’ll be discussing what energy harvesting actually is, what TWTG’s ‘light energy’ technology is all about, and the capabilities of this technology. Going further, we’ll be discussing how to design a circuit for low-power usage, how to select components that will last for decades, and how to measure and test the entire system so it lives up to the promise of being always on, forever, without needing a new battery.

This is a community Hack Chat, so of course we’ll be taking questions from the community. If you have a question, add it to the discussion sheet

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This Hack Chat will be going down noon, Pacific time on Friday, October 20th. Is it always five o’clock somewhere? Yes, so here’s a time zone converter!

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Self Driving Potato Hits The Road

Potatoes deserve to roam the earth, so [Marek Baczynski] created the first self-driving potato, ushering in a new era of potato rights. Potato batteries have been around forever. Anyone who’s played Portal 2 knows that with a copper and zinc electrode, you can get a bit of current out of a potato. Tubers have been powering clocks for decades in science classrooms around the world. It’s time for something — revolutionary.

[Marek] knew that powering a timepiece wasn’t enough for his potato, so he picked up a Texas Instruments BQ25504 boost converter energy harvesting chip. A potato can output around 0.4 V at 0.6 mA. The 25504 uses this power to slowly charge a capacitor. Every fifteen minutes or so, enough energy is stored to power a motor for a short time. [Marek] built a car for his potato — or more fittingly, he built his potato into a car.

The starch-powered capacitor moves the potato car about 8 cm per cycle. Over the course of a day, the potato can travel around 7.5 meters. Not very far, but hey, that’s further than the average potato travels on its own power. Of course, any traveling potato needs a name, so [Marek] dubbed his new pet “Pontus”. Check out the video after the break to see the ultimate fate of poor Pontus.

Now that potatoes are mobile, we’re going to need a potato detection system. Humanity’s only hope is to fight fire with fire – break out the potato cannons!

Continue reading “Self Driving Potato Hits The Road”

Hackaday Prize Entry: Self Sustained Low Power Nodes

Consider for a second the Internet of Things. A vast network of connected devices, programmable matter, and wearable electronics can only mean one thing: there’s going to be a ton of batteries. While changing the battery in a smoke detector may seem tolerable, changing the batteries in a thousand sensor nodes is untenable. The solution to this problem is self-contained sensor nodes, and right now the best power source for mobile devices is probably solar.

For his Hackaday Prize entry, [Shantam Raj] is building a self-contained sensor node. It’s a Bluetooth device for the Internet side of this Thing, but the real trick to this device is solar energy harvesting and low power capabilities through optimized firmware.

Basically, this system is a low-power SoC with Bluetooth. The power from this device comes from a small solar cell coupled with a very efficient power supply and some new, interesting supercapacitors from Murata. These supercaps are extremely small, have high storage capacity, low ESR, and fast charging and discharging. The test board (seen in the video below) provides a proof of concept, but this device has a problem: there’s a single ‘sanity check’/power LED on the board that consumes 4 mA. The microcontroller, when running the optimized firmware, only consumes 1 mA. Yes, the LED thrown into the prototype that only serves as an indication the device is on is the biggest power sink in the entire system.

This project is great, and it’s exactly what we’re looking for in The Hackaday Prize. If the Internet of Things ever happens as it was envisioned, we’re going to be buried under a mountain of coin cell lithium batteries. Some sort of energy harvesting scheme is the only way around this, and we’re happy to see someone is working on the problem.

Continue reading “Hackaday Prize Entry: Self Sustained Low Power Nodes”

WISP Needs No Battery Or Cable

One of the problems with the Internet of Things, or any embedded device, is how to get power. Batteries are better than ever and circuits are low power. But you still have to eventually replace or recharge a battery. Not everything can plug into a wall, and fuel cells need consumables.

University of Washington researchers are turning to a harvesting approach. Their open source WISP board has a sensor and a CPU that draws power from an RFID reader. To save power during communication, the device backscatters incoming radio waves, which means it doesn’t consume a lot of its own power during transmissions.

The big  news is that TU Delft has contributed code to allow WISP to reprogram wirelessly. You can see a video about the innovation below. The source code is on GitHub. Previously, a WISP had to connect to a PC to receive a new software load.

Continue reading “WISP Needs No Battery Or Cable”

I Am A Battery: Harvesting Heat Energy

If you get tired of charging batteries, you might be interested in [Hackarobot’s] energy harvesting demo. He uses a peltier device (although he’s really using it as a thermocouple which it is). A 1 farad super capacitor stores energy and an LTC3108 ultra low voltage converter with a 1:100 ratio transformer handles the conversion to a useful voltage.

The truth is, the amount of energy harvested is probably pretty small–he didn’t really characterize it other than to light an LED. In addition, we wondered if a proper thermocouple would work better (some old Russian radios used thermocouples either in fireplaces or kerosene lamps to avoid requiring batteries). Although a Peltier device and a thermocouple both use the Seebeck effect, they are optimized for different purposes. Thermocouples generate voltage from a temperature differential and Peltier modules generate temperature differentials from voltage.

However, as [Hackarobot] points out, the same technique might be useful with other alternate power sources like solar cells or other small generators. The module used has selectable output voltages ranging from 2.35V to 5V.

Continue reading “I Am A Battery: Harvesting Heat Energy”

A self powered camera, showing output video

Self Powered Camera Powers Itself

Cameras sense light to create images, and solar cells turn light into energy. Why not mash the two together and create a self-powered camera?

The Computer Vision Laboratory at Columbia built this unique camera, which harvests power from its photodiode sensors. These photodiodes also act as an array of pixels that can recover an image. The result is a black and white video camera that needs no external power supply.

The energy harvester circuit charges up a supercap that provides power to the system. The frame rate of the camera is limited by the energy that can be harvested: higher frame rates require more juice. For this reason, the team developed an algorithm that varies the frame rate based on available energy.

The MC13226V microcontroller that was used for this build features an internal 2.4 GHz radio. The group mentions wireless functionality as a possibility feature in the future, which would make for a completely untethered, battery free camera.

The IFind Kickstarter Campaign Was Just Suspended

A little more than one month ago we featured a Kickstarter campaign that was raising quite a lot of eyebrows and over half a million dollars. This particular product was a battery-free tag meant to be attached to anything you may lose in your daily life. It was supposed to communicate with Bluetooth Low Energy (BLE) devices and have a 200ft (60m) detection range.

The main claim was that the iFind could harvest enough power from existing RF fields inside a typical home environment to operate for centuries. As Kickstarter just cancelled its funding a few minutes ago it seems that the basic maths Hackaday did a while ago were correct and that the project was in fact a scam. We’ll direct our readers to this particular comment that sums up all the elements pointing to a fraudulent campaign and show you the email that the backers received:

A review of the project uncovered evidence of one or more violations of Kickstarter’s rules, which include:

  • A related party posing as an independent, supportive party in project comments or elsewhere
  • Misrepresenting support by pledging to your own project
  • Misrepresenting or failing to disclose relevant facts about the project or its creator
  • Providing inaccurate or incomplete user information to Kickstarter or one of our partners

Putting aside this news, this campaign’s cancellation raises a bigger question: why didn’t it happen before and how could we control Kickstarter campaigns? On a side note, it’s still very interesting to notice the nearly religious fervor of the sunk cost fallacy that such campaigns create in their comments.

Thanks [Rick] for the tip!