Maker [Dala] showing powerwall statistics

From Vehicle-to-Grid To DIY Home Powerwalls

As battery-to-grid and vehicle-to-home technologies become increasingly mainstream, the potential for repurposing electric vehicle (EV) batteries has grown significantly. No longer just a niche pursuit, using retired EV batteries for home energy storage has become more accessible and appealing, especially as advancements in DIY solutions continue to emerge. Last year, this project by [Dala] showcased how to repurpose Nissan Leaf and Tesla Model 3 battery packs for home energy storage using a LilyGO ESP32, simplifying the process by eliminating the need for battery disassembly.

In the past few months, this project has seen remarkable progress. It now supports over 20 different solar inverter brands and more than 25 EV battery models. The most exciting development, however, is the newly developed method for chaining two EV packs together to create a single large super-battery. This breakthrough enables the combination of, for example, two 100kWh Tesla packs into a massive 200kWh storage system. This new capability offers an accessible and affordable way to build large-scale DIY home powerwalls, providing performance that rivals commercial systems at a fraction of the cost.

With these advancements, the possibilities for creating powerful, cost-effective energy storage solutions have expanded significantly. We do however stress to put safety first at all times.

Hungry for more home powerbanks? We’ve been there before.

Continue reading “From Vehicle-to-Grid To DIY Home Powerwalls”

Tulip Is A Micropython Synth Workstation, In An ESP32

We’re not sure exactly what Tulip is, because it’s so many things all at once. It’s a music-making environment that’s programmable in Python, runs on your big computer or on an ESP32-S3, and comes complete with some nice sounding synth engines, a sequencer, and a drum machine all built in. It’s like your dream late-1980s synthesizer workstation, but running on a dev board that you can get for a song.

And because Tulip is made of open-source software and hardware, you can extend the heck out of it. For instance, as demonstrated in this video by [Floyd Steinberg], you can turn it into a fully contained portable device by adding a touchscreen. That incarnation is available from Makerfabs, and it’s a bargain, especially considering that the developer [Brian Whitman] gets some of the proceeds. Or, because it’s written in portable Python, you can run it on your desktop computer for free.

The most interesting part of Tulip for us, as programmer-musicians, is that it boots up into a Micrypython REPL. This is a synth workstation with a command-line prompt as its primary interface. It has an always-running main loop, and you make music by writing functions that register as callbacks with the main loop. If you were fast, you could probably live-code up something pretty interesting. Or maybe it wants to be extended into a physical musical instrument by taking in triggers from the ESP32’s GPIOs? Oh, and did we mention it sends MIDI out just as happily as it takes it in? What can’t Tulip do?

We’ve seen some pretty neat minimalist music-making devices lately, but in a sense Tulip takes the cake: it’s essentially almost entirely software. The various hardware incarnations are just possibilities, and because it’s all open and extremely portable, you can freely choose among them. We really like the design and sound of the AMY software synthesizer engine that powers the Tulip, and we’re sure that more synthesizer models will be written for it. This is a music project that you want to keep your eyes on in the future.

RC Car Gets Force Feedback Steering

Remote-controlled cars can get incredibly fast and complex (and expensive) the farther into the hobby you get. So much so that a lot of things that are missing from the experience of driving a real car start to make a meaningful impact. [Indeterminate Design] has a few cars like this which are so fast that it becomes difficult to react to their behavior fast enough through sight alone. To help solve this problem and bridge the gap between the experience of driving a real car and an RC one, he’s added force feedback steering to the car’s remote control.

The first thing to tackle is the data throughput required to get a system like this working wirelessly. Relying heavily on the two cores in each of a pair of ESP32s, along with a long-range, high-speed wireless communications protocol called ESP-NOW, enough data from the car can be sent to make this possible but it does rely on precise timing to avoid jitter in the steering wheel. Some filtering is required as well, but with the small size of everything in this build it’s also a challenge not to filter out all of the important high-frequency forces. With the code written, [Indeterminate Design] turned to the 3D printer to build the prototype controller with built-in motors to provide the haptic feedback.

The other half of the project involves sensing the forces in the RC car which will then get sent back to the remote. After experimenting with a mathematical model to avoid having to source expensive parts and finding himself at a deadend with that method, eventually a bi-directional load cell was placed inside the steering mechanism which solved this problem. With all of these pieces working together, [Indeterminate Design] has a working force feedback steering mechanism which allows him to feel bumps, understeer, and other sensations, especially while doing things like drifting or driving through grass, that would be otherwise unavailable to drivers of RC cars. The only thing we could think of to bring this even more into realistic simulation territory would be to add something like a first-person view like high-speed drones often have.

Continue reading “RC Car Gets Force Feedback Steering”

Your ESP32 As A USB Bluetooth Dongle

Using Bluetooth on a desktop computer is now such a seamless process; it’s something built-in and just works. Behind that ubiquity is a protocol layer called HCI, or Host Controller Interface, a set of commands allowing a host computer to talk to a Bluetooth interface.  That interface doesn’t have to be special, and [Dakhnod] is here to show us that it can be done with an ESP32 microcontroller through its USB interface.

The linked repository doesn’t tell us which of the ESP32 variants it works with, but since not all of them have a USB peripheral we’re guessing one of the newer variety. It works with Linux computers, and we’re told it should work with Windows too if a HCI driver is present. We might ask ourselves why such a project is necessary given the ubiquity of Bluetooth interfaces, but for us it’s provided the impetus to read up on how it all works.

We can’t find anyone else in our archive who’s made a Bluetooth dongle in this way, but we’ve certainly seen sniffing of HCI commands to reverse engineer a speaker’s communications.

The Last Instrument To Get Auto-Tuned

Various decades have their musical signature, like the excessive use of synthesizers and hairspray in the 1980s pop music scene. Likewise, the early 2010s was marked by a fairly extreme use of autotune, a technology that allows sounds, especially vocals, to be shifted to precise pitches regardless of the pitch of the original source. In this dark era, a wide swath of instruments and voices on the charts were auto-tuned at some point, although we don’t remember this iconic instrument ever being featured among the annals of pitch-shifted pop music.

The auto-tuned kazoo created by [Guy Dupont] does its pitch corrections on-the-fly thanks to a built-in ESP-32-S3 microcontroller which, through a microphone inside the kazoo, listens for note of the musician’s hum and corrects it to the closest correctly pitched note. Once it identifies the note it outputs a kazoo-like pitch-corrected note from a small speaker, also hidden inside the instrument. It does this fast enough for live performances using the YIN fundamental frequency estimation algorithm. Not only can the kazoo be played directly, but thanks to the implementation of MIDI it can be used to control other synthesizers or be played through other means as a stand-alone synthesizer.

Much like the 80s, where the use of synthesizers relaxed from excessive use on nearly every instrument on every track throughout the decade to a more restrained use as the decade faded, so has autotune been toned down in most music to be more subtly applied. But like our enjoyment of heavily synthesized tunes outside the 80s like those by Daft Punk or The Weeknd, we can also appreciate something heavily auto-tuned outside of the 2010s like a stylized kazoo or a T-Pain-style guitar effects pedal.

Continue reading “The Last Instrument To Get Auto-Tuned”

A fast-looking hand plays a reaction time game.

2024 Tiny Games Challenge: Improving Reaction Time

What lies at the heart of many games? In a sense, it’s your response time, which is a function of hand-eye coordination. Although the 2024 Business Card Challenge has come to a close, [gokux] tends to go small anyway, and has taken their miniature approach to the Tiny Games Challenge with this awesome little reaction time game.

It’s basically whack-a-mole, but instead of striking down fuzzy puppets, you get fast and furious on big buttons that light up. Press any button to start, and there is a 3-2-1 countdown to get you geared up for action. Once the screen says ‘GO’, you’re off to the races. Each of the four buttons will light up in random order, and your overall response time is taken as the average of these four.

While there are many microcontrollers that would work here, [gokux] chose the Seeed Studio Xiao ESP32-C3. If you want to make one of these for yourself, there are excellent build instructions waiting for you. Be sure to check it out in action after the break. Oh, and be sure to let [gokux] know if you can beat 220 ms.

Continue reading “2024 Tiny Games Challenge: Improving Reaction Time”

Photoresistor-based Single Pixel Camera

[Hugh] has been going back through episodes of the Hackaday podcast, and Elliot mentioned in episode 67 that it can often be inspiring to go back through the archives of Hackaday to find ideas for new projects. Well, he did just that and came across a single-pixel camera made using an infrared photodiode. He decided to try and hack together his own single-pixel camera, but this time on the cheap and using an ever simpler component – a photoresistor!

His description of the project tickled me – “I’ve used an ESP32, MicroPython, two servos, a peanut butter jar lid, a toilet paper roll, a paper towel roll, magnets and scrap wood for this version.” That’s certainly a much simpler bill of materials than the original (which was written up by Hackaday way back in 2015), which used a nice metal frame to hold everything together. However, there’s absolutely nothing wrong with improvising with things you happen to have to hand.

Continue reading “Photoresistor-based Single Pixel Camera”