Flamethrower skateboard

Light A Fire Under Your…Skateboard?

Kids, please don’t try this at home. Or at least make sure there’s nothing flammable around.

With that out of the way, we have to ask — who doesn’t love playing with fire? We’re betting that many of you also have enjoyed a little skateboarding at some point in your lives. [mikeasaurus] has married the two beloved activities and made a flame throwing skateboard! The parts count is fairly low, and it looks like everything can be purchased from Amazon if you can’t source all of the items locally.

[mikeasaurus] gives a few useful tips such as how he bent one of the two pipes on the fuel tank cap to prevent fuel from pouring out. Also, he used an adapter to bring down the diameter of the tubes from 1/4″ to 1/8″ which makes for a better performing fuel stream.

Instead of making this little foot cooker more complicated with additional electronics and wires to be operated by a hand-held remote control, [mikeasaurus] decided to build the controls directly into the skateboard with just a couple of foot-activated switches. This keeps his hands free to wave at all of the onlookers watching him speed by. Or better yet, to carry a fire extinguisher.

Admittedly, it appears from the video that the flame doesn’t really get ‘thrown’ too far, and [mikeasaurus] himself says:

“As long as you’re moving forward when the flames are activated, you’re good to go!”

Because of this, you probably don’t want to use your favorite board, as it’s going to be subject to direct flames.

You’ll see this when you watch the video after the break.

Continue reading “Light A Fire Under Your…Skateboard?”

Fire Hazard Testing

How do you know that new appliance you bought won’t burn your house down? Take a look at any electrical appliance, and you’ll find it marked with at least one, and most often, several safety certification marks such as UL, DIN, VDE, CSA or BSI. Practically every electrical product that plugs into utility supply needs to go through a mandatory certification process to ensure it meets these conformity test requirements. Some examples include domestic and industrial electrical appliances, tools, electrical accessories, consumer electronics and medical electronics.

When you look through a typical safety test standard, you’ll notice it breaks down the various tests in two categories. “Type” tests are conducted on prototypes and samples of the final product or its individual parts and components, and are not generally repeated unless there are changes in design or materials. “Acceptance” tests are routine verification tests conducted on 100% of the products produced. For example, a typical Type test would be used to check the fire retardant properties of the plastics used in the manufacture of the product during development, while a Routine test would be carried out to check for high voltage breakdown or leakage and touch currents on the production line.

Nowadays, a majority of countries around the world adopt standards created by international organizations such as IEC, ISO, and ITU, then fine tune them to suit local requirements. The IEC works by distributing its work across almost 170 Technical Committees and Subcommittees which are entrusted with the job of creating and maintaining standards. One of these committees is “TC89 Fire hazard testing” whose job is to provide “Guidance and test methods for assessing fire hazards of electro-technical equipment, their parts (including components) and electrical insulating materials”. These tests are why we feel safe enough to plug something in and still sleep at night.

Practically all electrical products need to confirm to this set of tests as part of their “Type” test routine. This committee produces fire hazard testing documents in the IEC 60695 series of standards. These documents range from general guidelines on several fire hazard topics to specific instructions on how to build the test equipment needed to perform the tests. It’s interesting to see how some of these tests are carried out and the equipment used. Join me after the break as we take a look at that process.

Continue reading “Fire Hazard Testing”

Hack Safely: Fire Safety In The Home Shop

Within the past two months we’ve covered two separate incidents of 3D printing-related fires. One was caused by an ill-advised attempt to smooth a print with acetone heated over an open flame, while the other was investigated by fire officials and found to have been caused by overuse of hairspray to stick prints to the printer bed. The former was potentially lethal but ended with no more than a good scare and a winning clip for “Hacking’s Funniest Home Videos”; the latter tragically claimed the life of a 17-year old lad with a lot of promise.

In light of these incidents, we here at Hackaday thought it would be a good idea to review some of the basics of fire safety as they relate to the home shop. Nowhere was this need made clearer than in the comments section on the post covering the fatal fire. There was fierce debate about the cause of the fire and the potential negative effect it might have on the 3D-printing community, with comments ranging from measured and thoughtful to appallingly callous. But it was a comment by a user named [Scuffles] that sealed the deal:

“My moment of reflection is that it’s well past time I invest in a fire extinguisher for my workstation. Cause right now my fire plan pretty much consists of shouting obscenities at the blaze and hoping it goes out on its own.”

Let’s try to come up with a better plan for [Scuffles] and for everyone else. We’ll cover the basics: avoidance, detection, control, and escape.

Continue reading “Hack Safely: Fire Safety In The Home Shop”

A Big 3D Printer Built Using The Power Of Procrastination

When we wrote about [Dan Beaven]’s resin printer a while back he enthusiastically ensured us that, thanks to the recent wave of attention, he would finally finish the project. That’s why today we are covering his entirely unrelated 2 cubic foot print volume FDM printer. 

As we mentioned, [Dan] is no stranger to 3D printers. His addiction has progressed so far that he needs bigger and bigger parts, but when he looked at the price of printers that could sate his thirst… it wasn’t good. We assume this is the time he decided to leverage his resin printer procrastination to build a massive printer for himself.

The frame is aluminum extrusion. The bed is an 1/4″ thick aluminum plate supported just a little bit in from each corner. He can use the 4 motors to level the platform, which is a killer feature on a machine this big. More or less it’s fairly standard mechanically.

We are interested in his interesting addition of a FLIR thermal sensor to see live heat distribution. We also applaud him on his redundant safety systems (such as a smoke sensor that’s separately powered from the machine).

All the files are available on his site if you’re procrastinating on something and would like one for yourself.

3D Printer Tragedy Claims A Life

Thankfully it’s rare that we report on something as tragic as the death of a 17-year old, but the fact that the proximate cause was a 3D printer makes it all the worse and important for us to discuss.

The BBC report tells of a recently concluded coroner’s inquest into the December death of a young man in a fire at his family’s magic shop in Lincolnshire. The building was gutted by the fire, and the victim died of smoke inhalation. The inquest found that he had been working with a 3D printer in the shop and using hairspray to prepare the bed, a tip he apparently picked up from forums and blogs.

Unfortunately for this young man and his family, the online material didn’t mention that hairspray propellant contains volatile hydrocarbons like propane, cyclopropane, n-butane and isobutane — all highly flammable. Apparently the victim used enough hairspray in a small enough space to create an explosive mixture of fuel and air. Neighbors reported a gigantic fireball that consumed the shop, which took 50 firefighters to control.

While the inquest doesn’t directly blame the 3D printer as the source of ignition — which could just as easily have been a spark from a light switch, or a pilot light on a water heater — it does mention that the hot end can reach 300C. And the fact remains that were it not for the 3D printer and the online tips, it’s unlikely that a 17-year old boy would be using enough hairspray in an enclosed space to create what amounted to a bomb.

By all accounts, the victim was a bright and thoughtful kid, and for this to have happened is an unmitigated tragedy for his family and friends. This young man probably had a bright future and stood to contribute to the hacker community but for a brief lapse of judgment. Before anyone starts slinging around the blame in the comments section, think about it — how many time haves you done something like this and gotten away with it? This kid got badly unlucky and paid the ultimate price. Maybe we should make his death worth something by looking at what we do that skates a little too close to the thin edge of the ice.

Continue reading “3D Printer Tragedy Claims A Life”

Almost Fail Of The Week: Doing Surface Mount Reflow Wrong In Every Possible Way And Still Succeeding

Sometimes the best way to learn is from the success of others. Sometimes failure is the best teacher. In this case we are learning from [Tim Trzepacz]’s successive failures in his attempt to solder one board to another using a reflow oven. They somehow cancelled each other out, and he ended up with a working board. For those of you who have used a reflow oven, there will be eye rolling.

[Tim]’s first mistake was to use regular solder instead of paste. We can see how he got there logically; if you hand solder an SMD you melt solder onto the pads first to make it easier. However, the result was that he had two boards that wouldn’t sit flat on each other thanks to the globs of solder on the pads.

Not to be deterred, he laid the boards on top of each other and warmed up the oven to a toasty 650 degrees. Well, not quite. The dang oven didn’t turn to eleven, so he figured 500 would probably work too. Missing the hint entirely, he let his board bake in a nearly 1000F oven until he noticed some smoke which, he intuitively knew, definitely shouldn’t be happening.

The board was blackening, the solder mask was literally bubbling off the substrate, people were coming over to see the show, and he decided success was still possible. He clamped the heated boards together with a binder clip until they cooled. Someone gave him a lesson on reflow, presumably listened to through reddening ears.

Ashamed and defeated, he went home. However, there was a question in his mind. Sure it looks bad, but is it possible that the board actually works? After a quick test, the answer was yes. It loaded some code and an time later he was happily hacking away. Go figure.

EMF Fire Pong

One of the installations that consistently drew a large crowd after dark at EMF Camp 2016 was a game. This wasn’t a conventional computer game though, instead it was a line of gas jets along which a pair of players had to bat a jet of flame between them at ever-increasing speed until one player missed the return. This was the Fire Pong game created by members of Nottingham Hackspace, and though there seems to have been no online write-up of it as yet they have posted enough pictures of its build for us to deduce something of its construction.

A network of gas pipes and jets with all valves brought out to a clearly labeled control panel appears to control the gas flow through solenoid valves connected to a relay board driven by what appears to be an Arduino Pro Mini. The bats are huge for theatrical effect, but contain accelerometers to sense player swipes and send the information back to the gas control circuits. A pair of much larger flame generators indicate the end of a rally, and the score is displayed on a large LED scoreboard. There is very likely to be more to the system than we can glean from these pictures and a shot of the various components, but as yet we are so-to-speak in the dark on their details.

If you will excuse the quality constraints of a mobile phone camera in a darkened field, a video of the game in action is below the break. There was a significant queue for a turn at the bat, this was one of the event’s more popular night-time attractions.

Continue reading “EMF Fire Pong”