Prof Gershenfeld Speaks On Fab Labs And All-things Digital

Fab Labs have developed hand-in-hand with the all-too-familiar hackerspaces that we see today. If you’re curious to discover more about their past and future, [Prof Gershenfeld], founder of the Fab Lab, and director of MIT’s Center for Bits and Atoms brings us a fresh perspective on both these fab labs and the digital world we live in.

In a casual one-hour chat on Edge, [Prof Gershenfeld] dives deeply into the concept of digital in our world. We might consider digital to be a binarized signal, an analog waveform discretized into a 0 and 1 from which all of computer architecture is built upon today. Digital doesn’t just exist in the computing sense, however; it’s a concept that has been applied to communication, computation, and, these days: personal fabrication.

[Prof Gershenfeld’s] talk may highlight coming changes in the future, but changes are already happening today. These days, fab labs and hackerspaces serve their communities in a very special way. They take “experts-of-the-field” away from universities and isolated labs, and they scatter them all over the world. With this shift, anyone can walk through their doors and build a solid foundation in fields like embedded programming and computer aided manufacturing by striking a conversation with these local experts. In a nutshell, both spaces found a culture for development of expertise far more accessible to the world community than their university counterparts.

If you can spare the hour, put on some headphones, tune in, and resume your CAD work, PCB layout, or that Arduino library. You may discover that your work is built on a number of digital principles, and that your contributions push the rest farther along the development chain towards building something awesome.

Finally, if you’re interested in taking notes on building your own fab lab, have a look at the inventorylayout, and guidelines at the CBA website.

Hackaday Links Column Banner

Hackaday Links: May 17, 2015

Here’s a worthwhile Kickstarter for once: the Prishtina Hackerspace. Yes, that’s a Kickstarter for a hackerspace in Kosovo. Unlike most hackerspace Kickstarters, they’re already mostly funded, with 20 days to go. If we ever get around to doing the Istanbul to Kaliningrad hackerspace tour, we’ll drop by.

Codebender is a web-based tool that allows you to code and program an Arduino. The Chromebook is a web-based laptop that is popular with a few schools. Now you can uses Codebender on a Chromebook. You might need to update your Chromebook to v42, and there’s a slight bug in the USB programmers, but that should be fixed in a month or so.

Here’s a great way to waste five minutes. It’s called agar.io. It’s a multiplayer online game where you’re a cell, you eat dots that are smaller than you, and bigger cells (other players) can eat you. [Morris] found the missing feature: being able to find the IP of a server so you can play with your friends. This feature is now implemented in a browser script. Here’s the repo.

The FAA currently deciding the fate of unmanned aerial vehicles and systems, and we’re going to live with any screwup they make for the next 50 years. It would be nice if all UAV operators, drone pilots, and everyone involved with flying robots could get together and hash out what the ideal rules would be. That’s happening in late July thanks to the Silicon Valley Chapter of AUVSI (Association for Unmanned Vehicle Systems International).

SOLAR ROADWAYS!! Al Jazeera is reporting a project in the Netherlands that puts solar cells in a road. It’s just a bike path, it’s only 70 meters long, and it can support at least 12 tonnes (in the form of a ‘fire brigade truck’). There’s no plans for the truly dumb solar roadways stuff – heating the roads, or having lanes with LEDs. We’re desperately seeking more information on this one.

Trademarking Makerspace

UnternehmerTUMMakerSpaceGmbH, a tech accelerator in Munich, Germany, has just filed an application to trademark the word Makerspace. This has caused some contention in the German-speaking hackosphere, and if this trademark application is approved, the few spaces in Germany that identify as a makerspace may soon be changing the sign out front.

It must be noted this trademark application only covers the word ‘Makerspace’, and not “Hackerspace”. To most of the population, the word ‘hacker’ – in English and German – conjures up images of someone wearing a balaclava and using a laptop to steal bank accounts. To the uninitiated public, a hackerspace is distinct from a makerspace. In reality, they are remarkably similar: a hackerspace has a room filled with tools; a makerspace has a room filled with tools that allow people to control their language. Little difference, really, if you discount the [Frank Luntz]-level wordsmithing.

While this could go badly for any ~space in Germany with a ‘maker’ prefix, trademarking ‘makerspace’ isn’t really that much different from calling it a TechShop, and the trademark application is probably just a product of lawyers. In any event, it looks like  UnternehmerTUM MakerSpace GmbH has a pretty cool space; 1500m² (16000sq ft) of space, a water jet, and even some sewing equipment. We’d be happy to take a tour, so long as they don’t enforce the trademark.

Thanks [Moritz] for the tip.

Crazy Whirlwind Pre-Hackaday Prize Launch Tour

The Hackaday Prize was about to launch but the date wasn’t public yet. I decided to do a pre-launch tour to visit a few places and to drop in on some of the Hackaday Prize Judges. It started in Chicagoland, looped through San Francisco for a hardware meetup and Hardware Con, then finished with visits to [Ben Krasnow’s] workshop, [Elecia White’s] studio, and the Evil Mad Scientist Laboratories.

The Prize is now running and it’s time for you to enter. Look at some of the awesome hacking going on at the places I visited and then submit your own idea to get your entry started. Join me after the break for all the details of the adventure.

Continue reading “Crazy Whirlwind Pre-Hackaday Prize Launch Tour”

SXSW Create: ATX Hackerspace Area

We had a wonderful time over the weekend at the 2015 SXSW Create. I was really excited to see that there was a very large area set aside for the Hackerspaces of the Austin area and they took full advantage of that. Most notably, ATX Hackerspace who had multiple tables and was drawing a huge crowd.

sxsw-atx-thereminThis table is a good example of the demonstrations on hand. Primarily It’s a collection of ultrasonic theremin. The classic theremin uses oscillator-based sound production (we’ve been running a series on that concept) with a set of antennas that uses your body’s proximity to tweak that signal. This version mimics the user interface but greatly simplifies the skillset needed to produce the instrument by swapping the antenna for an ultrasonic rangefinder and generating the audio digitally. The more astute viewer will have noticed the instrument being held. I neglected to ask about this but it sure looks like a Holophonor which is another great seed idea for your next project. Update: it’s a Hulusi.

sxsw-atx-solderingI do think it’s worth noting that ATX also set aside a lot of table-space for their members to actually work on building projects at the event. We’re big advocates of this rather than simply exhibiting finished projects. It doesn’t really matter what you’re working on; seeing a table covered with interesting parts and tools, being worked on by fun people obviously enjoy each other’s company is the core message of a Hackerspace… right?

I talk with [Gardner] about ATX in the video after the break, and make a quick loop around the display tables.

Continue reading “SXSW Create: ATX Hackerspace Area”

Double Pendulum

Powered Double Pendulum Is A Chaotic Display

If you’ve never seen a double pendulum before, it’s basically just a pendulum with another pendulum attached to the end. You might not think that’s anything special, but these devices can exhibit extremely chaotic behavior if enough energy is put into the system. The result is often a display that draws attention. [David] wanted to build his own double pendulum display, but he wanted to make it drive itself. The result is a powered double pendulum.

There aren’t many build details here, but the device is simple enough that we can deduce how it works from the demonstration video. It’s broken into two main pieces; the frame and the pendulum. The frame appears to be made mostly from wood. The front plate is made of three layers sandwiched together. A slot is cut out of the middle to allow a rail to slide up and down linearly. The rail is designed in such a way that it fits between the outer layers of the front plate like a track.

The pendulum is attached to the linear rail. The rail moves up and down and puts energy into the pendulum. This causes the pendulum to actually move and generate the chaotic behavior. The rail slides up and down thanks to an electric motor mounted to the base. The mechanics work similar to a piston on a crankshaft. The motor looks as though it is mounted to a wooden bracket that was cut with precision on a laser cutter. The final product works well, though it is a bit noisy. We also wonder if the system would be even more fun to watch if the rotation of the motor had an element of randomness added to it. Or he could always attach a paint sprayer to the end. Continue reading “Powered Double Pendulum Is A Chaotic Display”

1.37″ CRT Restored By Hacklab For Miniature MAME Cabinet

For $5, [William] of Toronto’s Hacklab hackerspace got a hold of one of the smallest CRT screens ever made – about the size of a large coin. Over the course of a couple sessions – including a public hack boothside at their Mini Makerfaire – [William], [Igor], and several other members managed to connect it as a monitor directly off a Raspberry Pi. The end-goal is the world’s smallest MAME cabinet (smaller by almost half than this LCD one).

As Canada followed the US and stopped broadcasting analog back in 2011, it became quite a challenge to feed the screen a video source. They disclosed early that the easiest solution would just be an RF transmitter on the Pi and then tune the micro-set to that channel. Too easy. They wanted something elegant and challenging so they went digging into the circuitry to find a place to insert a composite video signal directly.

The real story here is their persistence at reverse engineering. The PCB was folded like a cardboard box to fit in the original case, making large portions of the circuitboard and wiring inaccessible. Even when they managed to trace the signal to what they thought was the appropriate chip (marked C80580), they could not find any information on the 30 year old chip. Noting that every other chip on the board was Panasonic and started with “AN5”, [Igor] suspected the mystery silicon was just renamed and went through every single datasheet he could find with that prefix. Combined with form factor, pin count and purpose, his sleuthing was rewarded with a guess for a match – the AN5715. His hunch was correct – using that datasheet led him to the answers they required.

Then they just had to figure out how get the composite signal the Pi outputted into something the chip would use to display the correct image. There were no shortage of challenges, failures and dead ends here either, but they had help from the rest of their membership.

Their project log is an interesting narrative through the process and in the end of course, it worked. It is displayed beautifully with a clear acrylic case and ready for a cabinet to be built.