A Closer Look At The Tanmatsu

A few weeks ago we brought you news of a new palmtop computer for hackers, powered by the new Espressif ESP32-P4 application processor. The Tanmatsu (Japanese for “Terminal”) is a compact handheld device with a QWERTY keyboard and an 800×480 DSI display, and while it currently exists at the final prototype stage there is a pre-order page upon which you can reserve an early production model for yourself. We’ve been lucky enough to be invited to give one a close-up inspection, so it was time to hot-foot it on the train to a Dutch hackerspace in order to bring you a preview.

A Little History, And First Impressions

The Tanmatsu, held in both hands.
Recesses in the case fit well against the hands.

Before looking at the device, it’s time for a little history. The Tanmatsu has its origin in badge.team, the Netherlands-based group that has produced so many European event badges over the years, and it was destined to eventually become the badge for the upcoming WHY2025 hacker camp. As sometimes happens in any community there has been a significant difference of opinion between the event orga and the badge.team folks that it’s inappropriate to go into here, so now it exists as a standalone project. It’s destined to be open-source in its entirety including hardware and software (and we will hold them to that, never fear), but because of the events surrounding its conception the full repositories will be not be made public until some time late in the summer.

Picking the Tanmatsu up and holding it, it’s a rectangular slab a bit larger and thicker than a CD case with that QWERTY keyboard and display on its front face, an array of ports including an SMA socket for a LoRA antenna on its sides, and an expansion connector on its rear. It has a sandwich construction, with a PCB front face, a 3D printed spacer, the PCB itself, and a 3D printed back cover all held together with a set of screws. The recesses on its bottom edge and the lower halves of the sides locate neatly with fingers and thumbs when it’s held in two hands for two-thumb typing. The keyboard is a silicone moulding as is common on this type of device, and while the keys are quite small it was not difficult to type on it. The display meanwhile feels of much higher quality than the SPI parts previously seen on badges. Continue reading “A Closer Look At The Tanmatsu”

Custom Firmware Adds Capabilities To Handie Talkie

Although ham radio can be an engaging, rewarding hobby, it does have a certain reputation for being popular among those who would fit in well at gated Florida communities where the preferred mode of transportation is the golf cart. For radio manufacturers this can be a boon, as this group tends to have a lot of money and not demand many new features in their technology. But for those of us who skew a bit younger, there are a few radios with custom firmware available that can add a lot of extra capabilities.

The new firmware is developed by [NicSure] for the Tidradio TD-H3 and TD-H8 models and also includes a browser-based utility for flashing it to the radio without having to install any other utilities. Once installed, users of these handheld radios will get extras like an improved S-meter and detection and display of CTCSS tones for repeater usage. There’s also a programmer available that allows the radio’s memory channels to be programmed easily from a computer and a remote terminal of sorts that allows the radio to be operated from the computer.

One of the latest firmware upgrades also includes a feature called Ultra Graph which is a live display of the activity on a selected frequency viewable on a computer screen. With a radio like this and its upgraded firmware, a lot of the capabilities of radios that sell for hundreds of dollars more can be used on a much more inexpensive handheld. All of this is possible thanks to an on-board USB-C interface which is another feature surprisingly resisted by other manufacturers even just for charging the batteries.

Continue reading “Custom Firmware Adds Capabilities To Handie Talkie”

A Handheld Gaming PC With Steam Deck Vibes

Since its inception, the Steam Deck has been a bit of a game changer in the PC gaming world. The goal of the handheld console was to make PC gaming as easy and straightforward as a walled-garden proprietary console like a Switch or Playstation but still allow for the more open gaming experience of a PC. At its core, though, it’s essentially a standard PC with the parts reorganized into handheld form, and there’s no reason any other small-form-factor PC can’t be made into a similar system. [CNCDan] has the skills and tools needed to do this and shows us how it’s done.

The build is based around a NUC, a small form factor computer that typically uses the same low-power mobile processors and graphics cards found in laptops but without the built-in battery or screen. This one has an AMD Ryzen 7 processor with Radeon graphics, making it reasonably high-performing for its size. After measuring out the dimensions of the small computer and preparing for other components like the battery, joysticks, buttons, and even a trackpad, it was time to create the case. Instead of turning to a 3D printer, this one is instead milled on a CNC machine. Something tells us that [CNCDan] prefers subtractive manufacturing in general.

With all the parts assembled in the case, the build turns into a faithful Steam Deck replica with a few bonuses, like an exposed Ethernet port and the knowledge that everything can easily be fixed since it was built from the ground up in the first place. The other great thing about builds like these is they don’t need an obscure NUC for the hardware; you can always grab your old Framework mainboard for handheld gaming instead. Reminded us of the NucDeck.

Continue reading “A Handheld Gaming PC With Steam Deck Vibes”

A Handheld Replica Sound Voltex Game

Sound Voltex is a music game from Konami; in fact, it’s a whole series of arcade games! [Luke] is a big fan, so decided to build a hardware handheld to play the Unnamed Sound Voltex Clone.  No—Voltex is not a typo, that’s the name.

If you’re unfamiliar, the Unnamed SDVX Clone is basically a community-built game that’s inspired by the original Konami titles. [Luke] decided to build a handheld console for playing the game, which is more akin to the arcade experience versus playing it on a desktop computer.

[Luke’s] build relies on a Raspberry Pi 4B, which donates its considerable processing power and buckets of RAM to the project. The Pi was installed into a 3D-printed case with a battery pack, touchscreen, and speakers, along with multiple arcade buttons  and rotary encoders for controlling the game. Booting the Pi and clicking the icon on the desktop starts up the Unnamed Sound Voltex Clone. The game itself will be fairly familiar to any rhythm game player, though it’s a tough more sophisticated than Audiosurf. [Luke] demonstrates the gameplay on YouTube, and the finished project looks great.

We always love seeing handheld hacks, from PlayStations that never were to retro DIY creations. Video after the break.

Continue reading “A Handheld Replica Sound Voltex Game”

Custom built Playstation handheld

The Phantom PSP: Crafting The Handheld Sony Never Sold

In the world of retro gaming, some legends never die – especially the ‘phantom’ PSP, Sony’s mythical handheld that never saw the light of day. While that elusive device remains a dream, hacker and gaming wizard [Kyle Brinkerhoff] built his own – and Macho Nacho made a video about it. His creation, which also goes by the name ‘Playstation Zero’, isn’t just another handheld emulator; it’s a powerful, custom-built system that revives the classics and plays them on a portable device that feels like the future.

Driven by a hunger for the ultimate gaming experience, [Kyle] set out to blend modern tech with retro gaming magic. He started with the Raspberry Pi, loading it up with emulation software for all the iconic systems—from NES and SNES to the Sega Genesis and Game Boy. But [Kyle] didn’t just slap on an off-the-shelf emulator; he dived into the code himself, optimizing and tweaking for lightning-fast responsiveness, so each game plays like it’s running on the original hardware. That’s hacking in true form: pushing the limits of software and hardware until they work exactly the way you want them to. Best of all: he published it all open source for others to use.

In the spirit of the Geneboy—a handheld Sega Genesis built by [Downing] and featured on Hackaday back in 2012—[Kyle]’s device pairs handheld emulation with the consoles all nineties kids wanted for Christmas. To capture the tactile thrill of vintage gaming, [Kyle] went a step further by designing and 3D-printing a custom controller layout that mimics the feel of the original systems. If watching someone neatly soldering a pcb sounds relaxing to you, don’t skip the middle part of his video. Although this little beast is packed with all bells and whistles you’d expect to see on a Raspberry Pi, it does lack one serious thing: battery life. But, [Kyle] is open about that, and hopes to improve on that in a future version.

If you want to see the full build, check out the video below. Or, immediately dive into [Kyle]’s Github, order the cute Takara shell, and get started!

Continue reading “The Phantom PSP: Crafting The Handheld Sony Never Sold”

The UMPC powered up, case-less showing the black PCB, with the display standing upwards and showing a blue colour scheme desktop with a CLI terminal open. To the right of it is one of the UMPCs that served as an inspiration for this project.

Bringing The UMPCs Back With A Pi Zero

Miss PDAs and UMPCs? You wouldn’t be the only one, and it’s a joy to see someone take the future into their own hands. [Icepat]’s dream is reviving UMPCs as a concept, and he’s bringing forth a pretty convincing hardware-backed argument in form of the Pocket Z project. For the hardware design, he’s hired two engineers, [Adam Nowak] and [Marcin Turek], and the 7-inch Pocket Z7 version is coming up quite nicely!

The Hackaday.io project shows an impressive gallery of inspiration devices front and center, and with these in mind, the first version of the 7-inch UMPC sets the bar high. With a 1024×600 parallel RGB (DPI) touchscreen display, an ATMega32U4-controlled keyboard, battery-ready power circuitry, and a socketed Pi Zero for brains, this device shows a promising future for the project, and we can’t wait to see how it progresses.

While it’s not a finished project just yet, this effort brings enough inspiration all around, from past device highlights to technical choices, and it’s worth visiting it just for the sentiment alone. Looking at our own posts, UMPCs are indeed resurfacing, after a decade-long hiatus – here’s a Sidekick-like UMPC with a Raspberry Pi, that even got an impressive upgrade a year later! As for PDAs, the Sharp memory LCD and Blackberry keyboard combination has birthed a good few projects recently, and, who can forget about the last decade’s introductions to the scene.

Hacking A Quansheng Handheld To Transmit Digital Modes

Have you ever thought about getting into digital modes on the ham bands? As it turns out, you can get involved using the affordable and popular Quansheng UV-K6 — if you’re game to modify it, that is. It’s perfectly achievable using the custom Mobilinkd firmware, the brainchild of one [Rob Riggs].

In order to efficiently transmit digital modes, it’s necessary to make some hardware changes as well. Low frequencies must be allowed to pass in through the MIC input, and to pass out through the audio output. These are normally filtered out for efficient transmission of speech, but these filters mess up digital transmissions something fierce.  This is achieved by messing about with some capacitors and bodge wires. Then, one can flash the firmware using a programming cable.

With the mods achieved, the UV-K6 can be used for transmitting in various digital modes, like M17 4-FSK. The firmware has several benefits, not least of which is cutting turnaround time. This is the time the radio takes to switch between transmitting and receiving, and slashing it is a big boost for achieving efficient digital communication. While the stock firmware has an excruciating slow turnaround of 378 ms, the Mobilinkd firmware takes just 79 ms.

Further gains may be possible in future, too. Bypassing the audio amplifier could be particularly fruitful, as it’s largely in the way of the digital signal stream.

Quansheng’s radios are popular targets for modification, and are well documented at this point.