Hackaday Links Column Banner

Hackaday Links: December 5, 2021

Sad news from Germany, with the recent passing of a legend in the crypto community: Mr. Goxx, the crypto-trading hamster. The rodent rose to fame in the crypto community for his trades, which were generated at random during his daily exercise routines — his exercise wheel being used like a roulette wheel to choose a currency, and a pair of tunnels determined whether the transaction would be a buy or sell. His trading career was short, having only started this past June, but he was up 20% over that time — that’s nothing to sneeze at. Our condolences to Mr. Goxx’s owners, and to the community which sprung up around the animal’s antics.

It might seem a little early to start planning which conferences you’d like to hit in 2022, but some require a little more lead time than others. One that you might not have heard of is DINACON, the Digital Naturalism Conference, which explores the intersection of technology and the natural world. The con is set for the entire month of July 2022 and will be held in Sri Lanka. It has a different structure than most cons, in that participants attend for a week or so on a rotating basis, much like a biology field station summer session. It sounds like a lot of fun, and the setting couldn’t be more idyllic.

If you haven’t already killed your holiday gift budget buying NFTs, here’s something you might want to consider: the Arduino Uno Mini Limited Edition. What makes it a Limited Edition, you ask? Practically, it’s the small footprint compared to the original Uno and the castellated edges, but there are a bunch of other extras. Each elegant black PCB with gold silk screening is individually numbered and comes in presentation-quality packaging. But the pièce de résistance, or perhaps we should say the cavallo di battaglia, is that each one comes with a hand-signed letter from the Arduino founders. They honestly look pretty sharp, and at $45, it’s really not a bad collector’s piece.

And finally, the YouTube algorithm giveth again, when this infrastructure gem popped up in our feed. You wouldn’t think there’d be much of interest to see in a water main repair, but you’d be wrong, especially when that main is 50′ (15 m) below the surface, and the repair location is 600′ (183 m) from the access hatch. Oh yeah, and the pipe is only 42″ (1 m) in diameter, and runs underneath a river. There’s just so much nope in this one, especially since the diver has to swim into a special turning elbow just to get pointed in the right direction; how he turns around to swim out is not worth thinking about. Fascinating tidbits include being able to see the gravel used to protect the pipe in the riverbed through the crack in the pipe, and learning that big water mains are not completely filled, at least judging by the small air space visible at the top of the pipe. Those with claustrophobia are probably best advised to avoid this one, but it’s still amazing to see how stuff like this is done.

Continue reading “Hackaday Links: December 5, 2021”

The Dark Side Of Package Repositories: Ownership Drama And Malware

At their core, package repositories sound like a dream: with a simple command one gains access to countless pieces of software, libraries and more to make using an operating system or developing software a snap. Yet the rather obvious flip side to this is that someone has to maintain all of these packages, and those who make use of the repository have to put their faith in that whatever their package manager fetches from the repository is what they intended to obtain.

How ownership of a package in such a repository is managed depends on the specific software repository, with the especially well-known JavaScript repository NPM having suffered regular PR disasters on account of it playing things loose and fast with package ownership. Quite recently an auto-transfer of ownership feature of NPM was quietly taken out back and erased after Andrew Sampson had a run-in with it painfully backfiring.

In short, who can tell when a package is truly ‘abandoned’, guarantee that a package is free from malware, and how does one begin to provide insurance against a package being pulled and half the internet collapsing along with it?

Continue reading “The Dark Side Of Package Repositories: Ownership Drama And Malware”

British Big Rigs Are About To Go Green

An increasing fact of life over the coming years will be the decarbonisation of our transport networks, for which a variety of competing solutions are being touted. Railways, trucks, cars, and planes will all be affected by this move away from fossil fuels, and while sectors such as passenger cars are making great strides towards electric drive, there remain some technical hurdles elsewhere such as with heavy road freight. To help inform the future of road transport policy in the UK then, the British government are financing a series of trials for transportation modes that don’t use internal combustion. These will include a battery-electric fleet for the National Health Service and a hydrogen-powered fleet in Scotland, as well as a trial of the same overhead-wire system previously given an outing in Germany, that will result in the electrification of a 12.4 mile section of the M180 motorway in Lincolnshire.

We’ve written about the overhead electrification project in Germany in the past and subjected it to a back-of-envelope calculation that suggested the total costs for a country such as the UK might be surprisingly affordable. The M180 is something of a backwater in the UK motorway network though, so it will be interesting to see how they approach the problem of finding real-world loads for their tests that ply such a short and isolated route. We’d expect the final picture to include all three technologies in some form, which can only be a good thing if it increases the available electric and hydrogen infrastructure. We’ll follow this story, though sadly we may not be able to blag a cab ride on the M180 in one of the trucks.

Black Starts: How The Grid Gets Restarted

Gripped as we are at the time of this writing by a historic heatwave, it’s hard for those of us in the western United States to picture a time when cold and ice reigned across the land. But really, it was only about four months back that another bit of freakish weather was visited across most of the country, including places ill-equipped to deal with the consequences. The now-fabled “February Freeze” left millions, mostly in Texas, scrabbling about in the dark and cold as a series of cascading engineering failures took apart their electrical grid, piece by piece, county by county.

The event has been much discussed and dissected, as an event with such far-reaching impact should be. Like much discussion these days, precious little of it is either informed or civil, and that’s not good news for those seeking to understand what happened and how to prevent it from happening again, or at least to mitigate the effects somewhat. Part of that is understandable, given the life-disrupting and often life-threatening situations the disaster forced people to suddenly face. It’s also difficult for people to discuss an event so widespread in its scope and impact — there’s just too much for anyone to wrap their head around.

To make the present discussion a little easier, we’ll be focusing on one aspect of the February grid crash that’s often bandied about but rarely explained: that the Texas grid was mere minutes away from collapsing completely, and that it would have taken weeks or months to restore had it been able to slip away. Is that really possible? Can the power grid just “go away” completely and suddenly? The answer, sadly, is yes, but thankfully a lot of thought has been put into not only preventing it from happening but also how to restart everything if it does happen, by performing what’s known as a “Black Start.”

Continue reading “Black Starts: How The Grid Gets Restarted”

SCADA Security Hack Chat

Join us on Wednesday, July 14 at noon Pacific for the SCADA Security Hack Chat with Éireann Leverett!

As a society, we’ve learned a lot of hard lessons over the last year and a half or so. But one of the strongest lessons we’ve faced is the true fragility of our infrastructure. The crumbling buildings and bridges and their tragic consequences are one thing, but along with attacks on the food and energy supply chains, it’s clear that our systems are at the most vulnerable as their complexity increases.

And boy are we good at making complex systems. In the United States alone, millions of miles of cables and pipelines stitch the country together from one coast to the other, much of it installed in remote and rugged places. Such far-flung systems require monitoring and control, which is the job of supervisory control and data acquisition, or SCADA, systems. These networks have grown along with the infrastructure, often in a somewhat ad hoc manner, and given their nature they can be tempting targets for threat actors.

Finding ways to secure such systems is very much on Éireann Leverett’s mind. As a Senior Risk Researcher at the University of Cambridge, he knows about the threats to our infrastructure and works to find ways to mitigate them. His book Solving Cyber Risk lays out a framework for protecting IT infrastructure in general. For this Hack Chat, Éireann will be addressing the special needs of SCADA systems, and how best to protect these networks. Drop by with your questions about infrastructure automation, mitigating cyber risks, and what it takes to protect the endless web of pipes and wires we all need to survive.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, July 14 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Gassing Up: Understanding The Liquid Fuel Distribution Network

When someone talks about “The Grid,” as in “dropping off the grid” or “the grid is down,” we tend to think in terms of the electromagnetic aspects of the infrastructure of modern life. The mind’s eye sees The Grid as the network of wires that moves electricity from power plants to homes and businesses, or the wires, optical cables, and wireless links that form the web of data lines that have stitched the world together informatically.

The Grid isn’t just about power and data, though. A huge portion of the infrastructure of the developed world is devoted to the simple but vital task of moving liquid fuels from one place to another as efficiently and safely as possible. This fuel distribution network, comprised of pipelines, railways, and tankers trucks, is very much part of The Grid, even if it goes largely unseen and unnoticed. At least until something major happens to shift attention to it, like the recent Colonial Pipeline cyberattack.

Continue reading “Gassing Up: Understanding The Liquid Fuel Distribution Network”

Solar And Wind Could Help Support Ethiopia’s Grand Dam Project

Ethiopia is in the midst of a major nation-building project, constructing the Grand Ethiopian Renaissance Dam (GERD). Upon completion, GERD will become the largest hydropower plant in Africa, providing much needed electricity for the country’s growing population.

The project dams the Blue Nile, a river which later flows into neighbouring Sudan, where it merges with the White Nile and then flows on to Egypt. Like all rivers that flow across political boundaries, concerns have been raised about the equitable management of the water resources to the benefit of those upstream and down. Too much water dammed upstream in GERD could have negative effects on Egyptian agriculture reliant on river flows, for example. Efforts are ongoing to find a peaceful solution that suits all parties. Recently, suggestions have been made to supplement the dam’s power output with solar and wind to minimise disruption to the river’s users.

Continue reading “Solar And Wind Could Help Support Ethiopia’s Grand Dam Project”