2D-Scanner Records Surfboard Profiles For Posterity

[Ryan Schenk] had a problem: he built the perfect surfboard. Normally that wouldn’t present a problem, but in this case, it did because [Ryan] had no idea how he carved the gentle curves on the bottom of the board. So he built this homebrew 2D-scanner to make the job of replicating his hand-carved board a bit easier.

Dubbed the Scanbot 69420 – interpretation of the number is left as an exercise for the reader, my dude – the scanner is pretty simple. It’s just an old mouse carrying a digital dial indicator from Harbor Freight. The mouse was gutted, with even the original ball replaced by an RC plane wheel. The optical encoder and buttons were hooked to an Arduino, as was the serial output of the dial indicator. The Arduino consolidates the data from both sensors and sends a stream of X- and Z-axis coordinates up the USB cable as the rig slides across the board on a straightedge. On the PC side, a Node.js program turns the raw data into a vector drawing that represents the profile of the board at that point. Curves are captured at various points along the length of the board, resulting in a series of curves that can be used to replicate the board.

Yes, this could have been done with a straightedge, a ruler, and a pencil and paper – or perhaps with a hacked set of calipers – but that wouldn’t be nearly as much fun. And we can certainly see applications for this far beyond the surfboard shop.

Hacked Calipers Make Automated Measurements A Breeze

Now, digital calipers with wired interfaces to capture the current reading are nothing new. But the good ones are expensive, and really, where’s the fun in plugging a $75 cable into a computer? So when [Max Holliday] was asked to trick out some calipers for automating data capture, he had to get creative.

[Max] found that cheap Harbor Freight digital calipers have the telltale door that covers a serial connector, making them a perfect target for hacking. A little Internet sleuthing revealed the pinout for the connector as well as some details on the serial protocol used by most digital calipers: 24-bit packets is six four-bit words. [Max] used his SAM32, a neat open-source board with both a SAMD51 and an ESP32 that can run CircuitPython. An inverting buffer interfaces the serial lines to the board, which is just the right size to mount on the back of the caliper head. It’s hard to tell how [Max] is triggering readings, but the SAM32 is mounted as a USB device and sends keystrokes directly to a spreadsheet – yes, with the ESP32 it could have been wireless, but his client specifically requested a wired setup. Taking multiple readings is easy now that the user never has to swap calipers for a pen.

Cheap calipers like these are pretty hackable – you can add Bluetooth, turn them into DROs for a milling machine, or even make them talk.

Digital Multimeasure Helps You Get The Job Done

In any mechanical field of work, accurate measurement is key to success. [Patrick Panikulam] knows this well, and decided to build a device that would be useful for some of the more tricky measurement tasks he was encountering.

[Patrick]’s digital multi-functional measurement tool packs a bunch of useful hardware into a pocket-sized form factor. There’s a Sharp IR distance sensor for non-contact measurements, a rotary wheel encoder for measuring distances along curved lines, and an MPU6050 IMU packing accelerometers and gyroscopes for measuring angles and surface levels. Control is via touch buttons, so measurements can be taken without disturbing the position of the device.

The use cases for such a device are many and varied. [Patrick] reports using it to verify that his 3D printer bed is leveled, as well as using it to measure curved surfaces in order to accurately cut stickers to suit. It’s got the hardware to serve as a digital protractor, too.

Combining a variety of useful hardware into a compact form factor, while also taking into account usability, has netted [Patrick] a handy tool. It’s not dissimilar from commercial measurement tools available online, and yet is completely built from off-the-shelf parts. Truly a handy device to have in any hacker’s toolbox!

 

 

Digital Protractor Makes Angular Measurements A Snap

Old school vernier calipers served engineers and machinists well for a long time — and did a perfectly good job. Digital models then came along and were easier to read. They now rule the roost, despite their thirst for batteries. Humans are naturally wired to make the least effort possible at all times. That’s why you always drive to the store that’s only a few blocks from your doorstep. In this vein, you may find a digital protractor preferable to the classic printed type.

[Nirav Jadav]’s project is a simple one but serves as a good learning experience for those getting to grips with microcontrollers. An Arduino Pro Mini serves as the brains, reading signals from an MPU6050 gyroscope. Measured angles are displayed on a small OLED screen.

To use the protractor, first the reference button must be pressed, then the device may be rotated to measure the angle. Relying on a gyroscope means that it’s likely less accurate than a printed device, particularly if it isn’t recalibrated every few measurements to account for drift.

However, like many projects to grace these pages, its value lies not in its usability, but in the journey of creation. To build such a device requires programming ability, an understanding of interfacing with external peripheral devices, as well as how to drive a graphical display. These skills are highly useful in a wide variety of projects, and they’ll serve [Nirav] well in projects to come.

Once you’ve built your digital protractor, why not have a stab at building a digital measuring tape?

[Thanks to Baldpower for the tip!]

There Is No Such Thing As An Invalid Unit

The Mars Climate Orbiter was a spacecraft launched in the closing years of the 1990s, whose job was to have been to study the Martian atmosphere and serve as a communications relay point for a series of other surface missions. It is famous not for its mission achieving these goals, but for the manner of its premature destruction as its orbital insertion brought it too close to the planet’s atmosphere and destroyed it.

The ill-fated Mars Climate Orbiter craft. NASA [Public domain].
The ill-fated Mars Climate Orbiter craft. NASA [Public domain].
The cause of the spacecraft entering the atmosphere rather than orbiting the planet was found in a subsequent investigation to be a very simple one. Simplifying matters to an extent, a private contractor supplied a subsystem which delivered a reading whose units were in the imperial system, to another subsystem expecting units in the SI, or metric system. The resulting huge discrepancy caused the craft to steer towards the surface of the planet rather than the intended orbit, and caused the mission to come to a premature end. Billions of dollars lost, substantially red faces among the engineers responsible.

This unit cock-up gave metric-using engineers the world over a brief chance to feel smug, as well as if they were being honest a chance to reflect on their good fortune at it not having happened on their watch. We will all at some time or another have made an error with respect to our unit calculations, even though in most cases it’s more likely to have involved a simple loss of a factor of ten, and not with respect to a billion dollar piece of space hardware.

But it also touches on one of those fundamental divides in the world between the metric and imperial systems. It’s a divide that brings together threads of age politics, geography, nationalism, and personal choice, and though it may be somewhere angels fear to tread (we’ve seen it get quite heated before to the tune of 885+ comments), it provides a fascinating subject for anyone with an interest in engineering culture.

Continue reading “There Is No Such Thing As An Invalid Unit”

Standard Resistor Teardowns

What do you do, when you want an ohm? What is an ohm, for that matter? Take a wander over to the textbook definitions, and you’re soon deep in a world of coulombs and parallel infinite planes one meter apart in a vacuum that you probably only half remember from your high school physics class. It’s hard work, this metrology lark.

Of course, you can just order a resistor. A few cents each when you’re buying small quantities or much less when you’re buying a reel of five thousand, and there you have it. An ohm. Only it’s not really an ohm, more like nearly an ohm. Within 1% of an ohm is pretty good, but Vishay or Bourns or whoever don’t have the margins to get philosophical about those infinite planes when you’re only giving them a few cents.

When you REALLY want an ohm, you buy a standard resistor, and you pay a more significant sum. You’re never going to wire one of these up to bias a transistor or drive an LED, instead it’s about as close as it’s possible to get on your bench to the value it says on the box and you can use it for calibration purposes. PPM figures well in excess of the resolution of even superior DMMs sound pretty good to us!

[Zlymex] was curious about standard resistors, so performed a teardown of a few to see what they contain. And after a pithy explanation of the terms involved he’s managed to look inside quite a few of them.

Inside he finds hermetically sealed wire-wound resistors, some oil-filled wire-wound resistors, and the occasional hefty piece of manganin. He also tears down some of the hermetically sealed resistors themselves, finding both wire-wound and foil resistance elements within.

It is a curious obsession that permeates hacker culture, that of standard measurements, and it’s one we’ve covered quite a few times here. Time enthusiasts with atomic clocks like this rather beautiful discrete logic build, or voltage enthusiasts with their temperature compensated references or programmable standards. Surprisingly though, this appears to be the first time we’ve looked at standard resistors.

Thanks [David Gustafik] for the tip.