Hands On With A Giant Nixie Tube

[Sam Battle] is no stranger to these pages, nor is his Museum is not Obsolete. The museum was recently gifted an enormous Nixie tube created by Dalibor Farný, a B-grade (well, faulty) unit that could not be used in any of their commissioned works but was perfectly fine for displaying in the museum’s retro display display. This thing is likely the largest Nixie tube still being manufactured; although we read that it’s probably not the largest ever made, it’s still awesome.

Every hacker should have their own museum.

It is fairly simple to use, like all Nixie tubes, provided you’re comfortable with relatively high DC voltages, albeit at a low current. They need a DC voltage because if you drive the thing with AC, both the selected cathode digit plate and the anode grid will glow, which is not what you need.

Anyway, [Sam] did what he does best, clamped the delicate tube in some 3D printed mounts and hooked up a driver made from stuff he scraped out of a bin in the workshop. Obviously, for someone deeply invested in ancient electromagnetic telephone equipment, a GPO (British General Post Office, now BT) uniselector was selected, manually advanced with an arcade-style push button via a relay. This relay also supplies the ~140 V for the common anode connection on the Nixie tube. The individual digit cathodes are grounded via the uniselector contacts. A typically ancient GPO-branded snubber capacitor prevents the relay contacts from arcing over and ruining the display unit. There isn’t much more to it, so if you’re in the Ramsgate, UK, area anytime soon, you can pop in and play with it for yourself.

Nixies are cool, we’ve covered Nixie projects for years, like this DIY project from ages ago. Bringing such things into the modern area is the current specialty of Dalibor Farný, with this nice video showing some of the workmanship involved. By the way — the eagle-eyed will have noticed that we covered this particular Nixie tube before, shown in the format of a large art installation. But it doesn’t hurt to get close up and play with it on the bench.\

Continue reading “Hands On With A Giant Nixie Tube”

How To Properly Patch Your Iowa-Class Battleship

There’s a saying among recreational mariners that the word “boat” is actually an acronym for “bring out another thousand”, as it seems you can’t operate one for long without committing to expensive maintenance and repairs. But this axiom isn’t limited to just civilian pleasure craft, it also holds true for large and complex vessels — although the bill generally has a few more zeros at the end.

Consider the USS New Jersey (BB-62), an Iowa-class battleship that first served in the Second World War and is now operated as a museum ship. Its recent dry docking for routine repair work has been extensively documented on YouTube by curator [Ryan Szimanski], and in the latest video, he covers one of the most important tasks crews have to attend to while the ship is out of the water: inspecting and repairing the hundreds of patches that line the hull.

These patches aren’t to repair damage, but instead cover up the various water inlets and outlets required by onboard systems. When New Jersey was finally decommissioned in 1991, it was hauled out of the water and plates were welded over all of these access points to prevent any potential leaks. But as the Navy wanted to preserve the ship so it could potentially be reactivated if necessary, care was taken to make the process reversible.

Continue reading “How To Properly Patch Your Iowa-Class Battleship”

Hackaday Links Column Banner

Hackaday Links: January 14, 2024

How long does it take a team of rocket scientists to remove two screws? When the screws they’re working on are keeping a priceless sample of asteroid safe, it’s about three months. That’s how long NASA has been working on the OSIRIS-REx sample return canister, which came back to Earth from asteroid Bennu back in September. The container was crammed full of asteroid bits, thanks in part to an overly energetic impact between the sample-collecting boom and Bennu. There was so much stuff that planetary scientists were able to recover about 70 grams of material that was covering the outside of the sealed container; this must have been a boon to the engineers, who got to figure out how to open the jammed cover of the container without anyone breathing down their necks for samples to study. The problem was a pair of stuck fasteners out of the 35 holding the lid on the container; the solution was far more complicated than a spritz of WD-40 and a little bit of heating with an oxy-acetylene torch. Engineers had to design two “clamp-like tools” and test them on a mock-up to make sure they wouldn’t contaminate the sample. We’d love to know more about these tools; trust us, we’ll be looking into this closely. If we find anything, a full article will be forthcoming.

Continue reading “Hackaday Links: January 14, 2024”

Hackaday Links Column Banner

Hackaday Links: October 22, 2023

The second of three major solar eclipses in a mere six-year period swept across the United States last week. We managed to catch the first one back in 2017, and still have plans for the next one in April of 2024. But we gave this one a miss, mainly because it was “just” an annular eclipse, promising a less spectacular presentation than a total eclipse.

Looks like we were wrong about that, at least judging by photographs of last week’s “Ring of Fire” eclipse. NASA managed to catch a shot of the Moon’s shadow over the middle of the US from the Deep Space Climate Observer at Lagrange Point 1. The image, which shows both the compact central umbra of the shadow and the much larger penumbra, which covers almost the entire continent, is equal parts fascinating and terrifying. Ground-based photographers were very much in the action too, turning in some lovely shots of the eclipse. We particularly like this “one-in-a-million” shot of a jet airliner photobombing the developing eclipse. Shots like these make us feel like it was a mistake to skip the 10-hour drive to the path of annularity.

Continue reading “Hackaday Links: October 22, 2023”

Hackaday Links Column Banner

Hackaday Links: July 16, 2023

Last week, we noted an attempt to fix a hardware problem with software, which backfired pretty dramatically for Ford when they tried to counter the tendency for driveshafts to fall out of certain of their cars by automatically applying the electric parking brake.

This week, the story is a little different, but still illustrates how software and hardware can interact unpredictably, especially in the automotive space. The story centers on a 2015 Optima recall for a software update for the knock sensor detection system. We can’t find the specifics, but if this recall on a similar Kia model in the same model year range and a class-action lawsuit are any indication, the update looks like it would have made the KSDS more sensitive to worn connecting rod damage, and forced the car into “limp home mode” to limit damage to the engine if knocking is detected.

A clever solution to a mechanical problem? Perhaps, but because the Kia owner in the story claims not to have received the snail-mail recall notice, she got no warning when her bearings started wearing out. Result: a $6,000 bill for a new engine, which she was forced to cover out of pocket. Granted, this software fix isn’t quite as egregious as Ford’s workaround for weak driveshaft mounting bolts, and there may very well have been a lack of maintenance by the car’s owner. But if you’re a Kia mechanical engineer, wouldn’t your first instinct have been to fix the problem causing the rod bearings to wear out, rather than papering over the problem with software?

Continue reading “Hackaday Links: July 16, 2023”

Fifteen Flat CRTs And A Bunch Of Magnets Make For Interactive Fun

If you were a curious child growing up when TVs were universally equipped with cathode ray tubes, chances are good that you discovered the effect a magnet can have on a beam of electrons. Watching the picture on the family TV warp and twist like a funhouse mirror was good clean fun, or at least it was right up to the point where you permanently damaged a color CRT by warping the shadow mask with a particularly powerful speaker magnet — ask us how we know.

To bring this experience to a generation who may never have seen a CRT display in their lives, [Niklas Roy] developed “Deflektron”, an interactive display for a science museum in Switzerland. The CRTs that [Niklas] chose for the exhibit were the flat-ish monochrome tubes that were used in video doorbell systems in the late 2000s, like the one [Bitluni] used for his CRT Game Boy. After locating fifteen of these things — probably the biggest hack here — they were stripped out of their cases and mounted into custom modules. The modules were then mounted into a console that looks a little like an 80s synthesizer.

In use, each monitor displays video from a camera mounted to the module. Users then get to use a selection of tethered neodymium magnets to warp and distort their faces on the screen. [Niklas] put a lot of thought into both the interactivity of the exhibit, plus the practical realities of a public installation, which will likely take quite a beating. He’s no stranger to such public displays, of course — you might remember his interactive public fountain, or this cyborg baby in a window.

Continue reading “Fifteen Flat CRTs And A Bunch Of Magnets Make For Interactive Fun”

Patents And The Missing Museum

A beautiful chapter of the history of invention in the United States ended with a fire in 1880. Well, the fire took place in 1877, but the wheels of government turn slowly. For the first 90 years that patents were granted in the USA, applications were required to be accompanied by a working model – to prove that the idea works and rule out “the perpetual motion cranks”.

During this time, the US Patent Office put all of these models on display, or at least as many of them as they could. The idea was that, alongside the printed documents, people would learn from seeing the inventions in the flesh. This tremendous resource got the Patent Office nicknamed the “Temple of Invention”, and rightly so. Many of the crucial innovations of the industrial revolution were there, in miniature. From Samuel Morse’s model telegraph, through Eli Whitney’s cotton gin, to more than a thousand inventions of Thomas Edison’s, working models were to be seen in the flesh, if in the small. We can only imagine how awe-inspiring it would have been to walk through those halls.

Two fires put significant dents in this tremendous collection. First in 1836, in a fire that consumed most of the approximately 10,000 patents that had been issued to that date, models and paper copies alike. Ironically, these included the patent for the first cast-iron fire hydrant. This fire was so devastating that it led to a dramatic patent reform in that same year, and to the building of a new fireproof Patent Office.

And the “new” Patent Office building still stands today, and proudly displayed patent models until the fire that broke out inside the building in 1877. (The contents of the building weren’t fireproof.) In this second fire, brave employees saved many of the works by staying and battling the fire from inside, but the second demoralizing beatdown, and the accelerating number of patent applications, it became obvious that there just wasn’t enough space to store a model of each patentable invention, and the requirement was dropped in 1880.

A small portion of the remaining patent models were put on display in one wing of the National Portrait Gallery, housed in the Patent Office building, and I had the wonderful opportunity to see it live in the early 2000s. I have no idea if the exhibit is still there – I’m guessing it’s not. The Smithsonian owns the lion’s share of the existing models, and we imagine they are in a warehouse somewhere, like at the end of Raiders of the Lost Ark.

A shame, because seeing a real 3D model of a thing is different from seeing line drawings. Maybe in the future, 3D CAD drawings will take their place? They’d be a lot easier to save in event of a fire.