500cc Of 4-Wheel Off-Road Fun

Who among us hasn’t at some point thought of building a little vehicle, and better still, a little off-road vehicle for a few high-octane rough-terrain adventures. [Made in Poland] has, and there he is in a new video with a little off-road buggy.

The video which we’ve paced below the break is quite long, and it’s one of those restful metalworking films in which we see the finished project take shape bit by bit. In this case the buggy has a tubular spaceframe, with front suspension taken from a scrap quad and a home-made solid rear axle. For power there’s a 500cc Suzuki two-cylinder motorcycle engine, with a very short chain drive from its gearbox to that axle. The controls are conventional up to a point, though we’d have probably gone for motorcycle style handlebars with a foot shift rather than the hand-grip shift.

The final machine is a pocket drift monster, and one we’d certainly like to have a play with. We’d prefer some roll-over protection and we wonder whether the handling might be improved were the engine sprung rather than being part of a huge swing-arm, but it doesn’t appear to interfere with the fun. If you fancy a go yourself it’s surprisingly affordable to make a small vehicle, just build a Hacky Racer.

Continue reading “500cc Of 4-Wheel Off-Road Fun”

The Evolution Of A 3D Printed Off-Road R/C Car

For about as long as hackers and makers have been using desktop 3D printers, there have been critics that say the plastic parts they produce aren’t good for much else than toys and decorative pieces. They claim that printed parts are far too fragile to be of any practical use, and are better suited as prototype placeholders until the real parts can be injection molded or milled. Sure. Try telling that to [Engineering Nonsense].

He recently wrote in (as did a few other people, incidentally) to share the latest version of his incredible 3D printed remote control car, and seeing it tearing around in the video after the break, “fragile” certainly isn’t a word we’d use to describe it. Though it didn’t get that way overnight. The Tarmo4 represents a year of development, and as the name suggests, is the fourth version of the design.

We know the purists out there will complain that the car isn’t entirely 3D printed, but honestly, it’s hard to imagine you could get much closer than this. Outside of the electronics, fasteners, tires, and shocks, the Tarmo4 is all plastic. That includes the gearbox and drive shafts. [Engineering Nonsense] even mentions in the video that he’s not happy with the tires he’s found on the market, and that they too will likely get replaced with printed versions in the future.

While the car is certainly an incredible technical achievement, what’s perhaps just as impressive is the community that’s developed around it in such a relatively short time. Towards the end of the video he shows off a number of custom builds based on previous iterations of the Tarmo. We’re sure that interest from the community has played a part in pushing the design forward, and it’s always good to see a one-off project become something bigger. Hopefully we’ll be seeing even more from this passionate community in the near future.

Just like the Open R/C Project, Tarmo proves that 3D printed parts are more than a novelty. If these diminutive powerhouses can run with printed gears and drive shafts, then you shouldn’t have anything to worry about when you run off the parts for your next project.

Continue reading “The Evolution Of A 3D Printed Off-Road R/C Car”

A Modular Ecosystem That Evolved Around A Simple Diesel Engine

High volume commodity products are a foundation of hacking, we’ve built many projects around popular form factors like NEMA 17 stepper motors, 608 bearings, and 280 DC motors. Their high volume led to lower cost, which further increased popularity, and the cycle repeats. A similar thing happened to a style of single-cylinder diesel engine in China, and [Jalopnik] takes us through an exploration of these “Tuo La Ji” (tractor) machines.

Like many popular standards, circumstances elevated this style of engine to become more popular than its peers. Judging from the pictures, the idea is similar to NEMA 17 in that the core essence is a bolt pattern and an output shaft. Different manufacturers offer various capabilities within this space, and a wild assortment of machinery evolved to take advantage of this class of power source.

It starts with a set of wheels and handlebars to create a walk-behind farm tractor, something pretty common around the world. But this particular ecosystem grew far beyond that to many other applications, including full sized trucks with off-road capability that would embarrass most of the genteel SUVs cruising our roads today. They may not be fast, but they only needed to be faster and have longer endurance than beasts of burden to be effective as “a horseless horse”.

Due to factors such as poor crash safety, absence of diesel emission controls, and affordability of more powerful (and faster!) vehicles, these machines are a dying breed. But that won’t change the fact there was a fantastic amount of mechanical hacking ingenuity that had sprung up around this versatile engine building simple and effective machines. Their creativity drew from the same well that fed into these Indonesian Vespas.

Photo by [Brian Holsclaw] CC BY-ND 2.0

Indonesian Jungle Vespas

Typically, we associate Vespas with Italians, riding their posh scooters midday under the heat of the Mediterranean sun. In one community, however, the riders and vehicles are pretty different – and by that we mean a whole lot different. Think Mad Max: Fury Road meets The Jungle Book.

The first Vespa arrived in Indonesia in the 1960s when the vehicles were rewarded to Indonesian peacekeepers returning from a mission in Africa. While many of the Vespas on the archipelago maintain the same classic style, some riders have modified theirs into entirely new conceptions.

Indonesian photographer [Muhammad Fadli] captures these riders on their Vespa sampah (“garbage Vespa”) and Vespa gembel (“Vespa drifter”), as they are known by locals. The unique design of the riders is partially attributed to their emergence in the early 2000s coinciding with the fall of the Soeharto authoritarian regime. The newfound freedom and self expression, as well as the relaxed law enforcement, contributed to the development of new types of modified vehicles on the road.

While the scooters are widespread, there isn’t any known count of extreme Vespas in the country. Most of the Vespas are not meant for riding, but rather to show off their physical form. While some are made from cheap steel frames and tires, others are adorned with road scraps and symbols. Anything from buffalo skeletons to machine gun rounds are used to accentuate the design of the scooters, many of which have a punk or metal vibe.

Within the community, there are annual extreme Vespa gatherings, which can draw thousands of riders from all over Indonesia. From frames made of bamboo to frames made of garbage, stalls that collect recyclables to add to their vehicles, and riders from all walks of life, there’s no apparent limit to the builders’ creativity.

[Thanks edmonkey for the tip!]

When The Going Gets Tough, These Wheels Transform To Tracks

When we want to build something to go where wheels could not, the typical solution is to use tracks. But the greater mobility comes with trade-offs: one example being tracked vehicles can’t go as fast as a wheeled counterpart. Information released by DARPA’s ground experimental vehicle technology (GXV-T) program showed what might come out of asking “why can’t we switch to tracks just when we need them?”

This ambitious goal to literally reinvent the wheel was tackled by Carnegie Mellon’s National Robotics Engineering Center. They delivered the “Reconfigurable Wheel-Track” (RWT) that can either roll like a wheel or travel on its tracks. A HMMWV serves as an appropriate demonstration chassis, where two or all four of its wheels were replaced by RWTs. In the video (embedded below) it is seen quickly transforming from one mode to another while moving. An obviously desirable feature that looks challenging to implement. This might not be as dramatic of a transformation as a walking robot that can roll up into a wheel but it has the advantage of being more immediately feasible for human-scale vehicles.

The RWT is not the only terrain mobility project in this DARPA announcement but this specific idea is one we would love to see scaled downed to become a 3D-printable robot module. And though our Hackaday Prize Robotics Module Challenge has already concluded, there are more challenges still to come. The other umbrella of GXV-T is “crew augmentation” giving operators better idea of what’s going around them. The projects there might inspire something you can submit to our upcoming Human-Computer Interface Challenge, check them out!

Continue reading “When The Going Gets Tough, These Wheels Transform To Tracks”

This Electric Longboard Collapses For Air Travel

How do you manage to get an electric off-road longboard past TSA and onto an international flight? Simple — make it a collapsible longboard that fits into a carry-on bag.

The mechanical and electrical feats accomplished by [transistor-man] may not be the most impressive parts of this hack. We’re pretty impressed by the build, starting as it did with the big knobby tires and front truck from an unused mountain board and the hub motor from a hoverboard, turning this into a trike. The incredible shrinking chassis comes courtesy of a couple of stout drawer slides and cam locks to keep it locked in place; collapsed, the board fits in a carry on bag. Expanded, it runs like a dream, as the video below shows.

But we think the really interesting part of this hack is the social engineering [transistor-man] did to ensure that the authorities wouldn’t ground his creation for electrical reasons. It seems current rules limit how big a battery can be and how many of them can be brought on a flight, so there was a lot of battery finagling before his creation could fly.

Electric longboards look like a real kick, whether they be all-aluminum or all-plastic, or even all-LEGO. This one, which went from concept to complete a week and a half before the flight, really raises the bar.

Continue reading “This Electric Longboard Collapses For Air Travel”

Off Road Jack

Lift Kits For Car Jacks Do Exist

When needing to change a tire or work under our vehicles we humans reach for a trusty jack. The standard jack in your trunk or mounted behind the seat of your truck works fine 99% of the time. But what happens when the vehicle in need of repair has a lifted suspension, raising the frame in relation to the ground and making the stock jack now too short?

Off-Road enthusiast [am4x4] had that problem and came up with a neat solution. He made a lift kit for a roll-around mechanics jack! He started with a 1.5 ton jack from Harbor Freight. This jack had 2 small casters in the rear and one wide roller in the front. This combination works great on concrete but [am4x4] needed this to work out in the dirt so a few mods were in order.

First the front roller was scrapped and replaced by two large 8 inch diameter tires. To get these to fit the bolt holes for the roller were enlarged to the same diameter as the wheel bearings. A new solid axle was then made from 5/8 inch solid rod. Those may look like pneumatic tires but they are actually solid rubber and only cost $6 each, also from Harbor Freight. These tires not only raise the jack up several inches but also increase the surface area contacting the ground. This better distributes the weight of the vehicle and prevents the jack from pushing itself into the ground.

In the back, the small stock casters were removed and replaced with larger, heavier duty ones. Even with the larger casters, the jack leans rearward. [am4x4] plans on making an extension to level the jack out but for now, it works well and is definitely a conversation piece at the off-road get togethers.