Custom RISC-V Processor Built In VHDL

While ARM continues to make inroads into the personal computing market against traditional chip makers like Intel and AMD, it’s not a perfect architecture and does have some disadvantages. While it’s a great step on the road to software and hardware freedom, it’s not completely free as it requires a license to build. There is one completely open-source and free architecture though, known as RISC-V, and its design and philosophy allow anyone to build and experiment with it, like this build which implements a RISC-V processor in VHDL.

Since the processor is built in VHDL, a language which allows the design and simulation of integrated circuits, it is possible to download the code for the processor and then program it into virtually any FPGA. The processor itself, called NEORV32, is designed as a system-on-chip complete with GPIO capabilities and of course the full RISC-V processor implementation. The project’s creator, [Stephan], also struggled when first learning about RISC-V so he went to great lengths to make sure that this project is fully documented, easy to set up, and that it would work out-of-the-box.

Of course, since it’s completely open-source and requires no pesky licensing agreements like an ARM platform might, it is capable of being easily modified or augmented in any way that one might need. All of the code and documentation is available on the project’s GitHub page. This is the real benefit of fully open-source hardware (or software) which we can all get behind, even if there are still limited options available for RISC-V personal computers for the time being.

How does this compare to VexRISC or PicoSOC? We don’t know yet, but we’re always psyched to have choices.

Hands-On Review: TCam-Mini WiFi Thermal Imager

A thermal camera is a tool I have been wanting to add to my workbench for quite a while, so when I learned about the tCam-Mini, a wireless thermal camera by Dan Julio, I placed an order. A thermal imager is a camera whose images represent temperatures, making it easy to see things like hot and cold spots, or read the temperature of any point within the camera’s view. The main (and most expensive) component of the tCam-Mini is the Lepton 3.5 sensor, which sits in a socket in the middle of the board. The sensor is sold separately, but the campaign made it available as an add-on.

Want to see how evenly a 3D printer’s heat bed is warming up, or check whether a hot plate is actually reflowing PCBs at the optimal temperature? How about just seeing how weird your pets would look if you had heat vision instead of normal eyes? A thermal imager like the tCam-mini is the tool for that, but it’s important to understand exactly how the tCam-mini works. While it may look like a webcam, it does not work like one.

Continue reading “Hands-On Review: TCam-Mini WiFi Thermal Imager”

Open Source Is Choice

If you haven’t been following along with the licensing kerfuffle surrounding the open-source Audacity audio editing software, take a sec to read Tom Nardi’s piece and get up to speed. The short version is that a for-profit company has bought the trademark and the software, has announced plans to introduce telemetry where there was none, made ominous changes to the privacy policy that preclude people under the age of consent from using the software, and requested that all previous developers acquiesce to a change in the open-source license under which it is published. All the while, the company, Muse, says that it will keep the software open, and has walked back and forth on the telemetry issue.

What will happen to “Audacity”? Who knows. But also, who cares? At least one fork of the codebase has been made, with the telemetry removed and the old open licenses in place. The nicest thing about open source is that I don’t care one bit if my software is named Audacity or Tenacity, and this is software I use every week for production of our podcast. But because I haven’t paid any license fees, it costs me absolutely nothing to download the same software, minus some anti-features, under a different name. If the development community moves over to Tenacity, it’ll all be fine.

Tom thinks that the Audacity brand is too big to fail, and that Muse will have a hit on their hands. Especially if they start implementing new, must-have features, they could justify whatever plans they have in store, even if they’re only available as a “freemium” Audacity Pro, with telemetry, under a more restrictive license. When that does happen, I’ll have to make the choice between those features and the costs, but I won’t be left out in the cold as long as the Tenacity fork gets enough eyes on it. So that’s just more choice for the end-user, right? That’s cool.

Compare this with closed source software. There, when the owner makes an unpopular decision, you simply have to take it or make the leap to an entirely different software package. This can be costly if you’ve gotten good at using that software, and between licenses and learning, there’s a lot of disincentive to switching. Not so in this case. If I don’t want to be tracked while editing audio offline, I don’t have to be. Woot.

The elephant in the room is of course the development and debugging community, and it’s way too early to be making predictions there. However, the same rules apply for devs and users: switching between two virtually identical codebases is as easy as git remote add origin or apt get install tenacity. (Unpaid) developers are free to choose among forks because they like the terms and conditions, because one group of people is more pleasant to work with, or because they like the color of one logo more than the other. Users are just as free to choose.

Time will tell if Audacity ends up like the zombie OpenOffice, which is downloaded in spite of the much superior LibreOffice just because of the former’s name recognition. I know this split riles some people up, especially in the LibreOffice development community, and it does seem unfair that the better software somehow enjoys less reputation. But for those of us in the know, it’s just more choice. And that’s good, right?

Muse Group Continues Tone Deaf Handling Of Audacity

When we last checked in on the Audacity community, privacy-minded users of the free and open source audio editor were concerned over proposed plans to add telemetry reporting to the decades old open source audio editing software. More than 1,000 comments were left on the GitHub pull request that would have implemented this “phone home” capability, with many individuals arguing that the best course of action was to create a new fork of Audacity that removed any current or future tracking code that was implemented upstream.

For their part, the project’s new owners, Muse Group, argued that the ability for Audacity to report on the user’s software environment would allow them to track down some particularly tricky bugs. The tabulation of anonymous usage information, such as which audio filters are most commonly applied, would similarly be used to determine where development time and money would best be spent. New project leader Martin “Tantacrul” Keary personally stepped in to explain that the whole situation was simply a misunderstanding, and that Muse Group had no ill intent for the venerable program. They simply wanted to get a better idea of how the software was being used in the real-world, but after seeing how vocal the community was about the subject, the decision was made to hold off on any changes until a more broadly acceptable approach could be developed.

Our last post on the subject ended on a high note, as it seemed like the situation was on the mend. While there was still a segment of the Audacity userbase that was skeptical about remote analytics being added into a program that never needed it before, representatives from the Muse Group seemed to be listening to the feedback they were receiving. Keary assured users that plans to implement telemetry had been dropped, and that should they be reintroduced in the future, it would be done with the appropriate transparency.

Unfortunately, things have only gotten worse in the intervening months. Not only is telemetry back on the menu for a program that’s never needed an Internet connection since its initial release in 2000, but this time it has brought with it a troubling Privacy Policy that details who can access the collected data. Worse, Muse Group has made it clear they intend to move Audacity away from its current GPLv2 license, even if it means muscling out long-time contributors who won’t agree to the switch. The company argues this will give them more flexibility to list the software with a wider array of package repositories, a claim that’s been met with great skepticism by those well versed in open source licensing.

Continue reading “Muse Group Continues Tone Deaf Handling Of Audacity”

RevK_NFC-Reader_v2-Photo

NFC Who’s At The Door

RevK_NFC_v1-Prototype-Photo
An early prototype that worked on the first try, except for one LED

[RevK] wanted to learn about NFC readers, and we agree that the best way to do so is to dive in and build one yourself.

There are readers available from multiple sources, but [RevK] found them either compact but with no prototyping space or plenty of prototyping space and a large footprint. High-speed UART (HSU) was selected over I2C for communication with an ESP32 as testing showed it was just as fast and more reliable over long distances at the cost of only one additional wire.

After a few versions, the resulting PN532 based NFC reader has just enough GPIO for a doorbell and tamper switch and three status LEDs, with board files and a 3D-printed case design included in the open source project on GitHub. When looking into the project, we appreciated learning about tamper switches that can include closed or open contact status when an NFC is read, most often used in the packaging of high-value and collectible products. If you have worked with this tamper feature of NFCs, let us know about it.

Thanks for the tip, [Simon]

Get Yourself A Pupper (For Education)

While the disquieting appearance of some of the robots coming out of DARPA and other labs might give us some reservations about how much intelligence we want to give to those robots, there’s a lot to be learned from them before their inevitable global takeover. This small quadruped called the Mini Pupper is just the robot for that job. With a low cost and familiar platform, it’s the ideal robot to learn some of the tricks of the trade.

For a quadruped so small, some unique changes had to be made to ensure the robot’s functionality. There have been a few developments since it was first shown over a year ago. The first was to design a custom servo that could handle the unique characteristics of this robot. From there, some other improvements were made to the robot chassis such as using threaded rods for ease of assembly and maintenance. Some other things have stayed the same though like using a Raspberry Pi to handle the control systems and self-navigation.

Of course everything needed to make this robot yourself is open source, from the code to the schematics. For experimenting with quadrupeds and even with automatic navigation, this would be a great way to get started, and the small size will also limit its ability for a Skynet-style takeover as well. That’s a nice bonus.

Continue reading “Get Yourself A Pupper (For Education)”

Emulating A Power Grid

The electric power grid, as it exists today, was designed about a century ago to accommodate large, dispersed power plants owned and controlled by the utilities themselves. At the time this seemed like a great idea, but as technology and society have progressed the power grid remains stubbornly rooted in this past. Efforts to modify it to accommodate solar and wind farms, electric cars, and other modern technology need to take great effort to work with the ancient grid setup, often requiring intricate modeling like this visual power grid emulator.

The model is known as LEGOS, the Lite Emulator of Grid Operations, and comes from researchers at RWTH Aachen University. Its goal is to simulate a modern power grid with various generation sources and loads such as homes, offices, or hospitals. It uses a DC circuit to simulate power flow, which is visualized with LEDs. The entire model is modular, so components can be added or subtracted easily to quickly show how the power flow changes as a result of modifications to the grid. There is also a robust automation layer to the entire project, allowing real-time data acquisition of the model to be gathered and analyzed using an open source cloud service called FIWARE.

In order to modernize the grid, simulations like these are needed to make sure there are no knock-on effects of adding or changing such a complex system in ways it was never intended to be changed. Researchers in Europe like the ones developing LEGOS are ahead of the curve, as smart grid technology continues to filter in to all areas of the modern electrical infrastructure. It could also find uses for modeling power grids in areas where changes to the grid can happen rapidly as a result of natural disasters.