Theory, Practice, And Ducted Fans

About a year ago, [Wyman’s Workshop] needed a fan. But not just a regular-old fan, no sir. A ducted fan. You know, those fancy fan designs where the stationary shroud is so close to the moving fan blades that there’s essentially no gap, and a huge gain in aerodynamic efficiency? At least in theory?

Well, in practice, you can watch how it turned out in this video. (Also embedded below.) If you’re more of a “how-to-build-it” type, you’ll want to check out his build video — there’s lots of gluing 3D prints and woodworking. But we’re just in it for the ducted fan data!

And that’s why we’re writing it up! [Wyman] made a nice thrust-testing rig that the fan can pull on to figure out how much force it put out. And the theory aimed at 652 g of thrust, which was roughly confirmed. And then you get to power: with a 500 watt motor, he ended up producing 47 watts. Spoiler: he’s overloading the motor, even though he used a fairly beefy bench grinder motor.

So he re-did the fan design, from scratch, to better match the motor. And it performed better than the theory said it would. A pleasant surprise, but it meant re-doing the theory, including the full volume of the fan blade, which finally brought theory and practice together. Which then lead him design a whole slew of fan blades and test them out against each other.

He ends the video with a teaser that he’ll show us the results from various inlet profiles and fan cones and such. But the video is a year old, so we’re not holding our breath. Still, if you’re at all interested in fan design, and aren’t afraid of high-school physics, it’s worth your time.

Don’t care about the advantages of ducted fans, but simply want to make your quad look totally awesome?  Have we got the hack for you!

Continue reading “Theory, Practice, And Ducted Fans”

Taking A Close Look At Parallel Plate Capacitors

Of course, we all know that capacitors are conceptually two conductors separated by a dielectric of some sort. But outside of air-variable capacitors you normally don’t see them looking like that. For example, a film capacitor has its plates rolled up in a coil with an insulating film in between. You can’t really see that unless you take them apart. But [Electronoobs] makes some giant capacitors using large plates and does a few experiments to demonstrate their characteristics. You can see his work in the video below.

The arrangement reminded us of a Leyden jar except there’s no physical motion. He also had some entertaining footage of electrolytic capacitors exploding when connected backwards. The reason, by the way, is that electrolytic capacitors have conductive goo in them. By putting a controlled current through them during manufacturing, a very thin insulating layer forms on one electrode. The thinner the layer, the higher the potential capacitance is. The downside is that putting current in the opposite way of the formation current causes catastrophic results, as you can see.

The value of a capacitor depends on the area, the spacing, and the type of dielectric between the plates. The video covers how each of those alters the capacitor value. Real capacitors also have undesirable characteristics like leakage and parasitic resistance or inductance.

It used to be that capacitance meters were exotic gear, but these days many meters have that capability. This would be a great set of experiments for a classroom or as the basis for a kid’s science project. For example, measuring different dielectric materials to determine which is the best for different purposes.

Granted, capacitors are pretty basic physics, but it is easy to get wrapped up in using them and not think about what’s going on inside. This video is a good introduction or a refresher, if you need one. It is easy enough to make your own variable capacitors or even special capacitors for high voltages.

Continue reading “Taking A Close Look At Parallel Plate Capacitors”

Impedance Mismatch

There are a few classic physics problems that it can really help to have a mental map of. One is, of course, wave propagation. From big-wave surfing, through loudspeaker positioning, to quantum mechanics, having an intuition for the basic dynamics of constructive and destructive interference is key. Total energy of a system, and how it splits and trades between kinetic and potential, is another.

We were talking about using a bike generator to recharge batteries on the Podcast last night, and we stumbled on a classic impedance mismatch situation. A pedaling person can put out 100 W, and a cell phone battery wants around 5 W to charge. You could pedal extremely lightly for nearly three hours, but I’d bet you’d rather hammer the bike for 10 minutes and get on with your life. The phone wants to be charged lightly — it’s high impedance — and you want to put out all your power at once — you’re a low impedance source.

The same phenomenon explains why you have to downshift your internal combustion automobile as you slow down. In high gear, it presents too high an impedance, and the motor can only turn so slowly before stalling. This is also why all vibrating string acoustic instruments have bridges that press down on big flat flexible surfaces, and why horns are horn shaped. Air is easy to vibrate, but to be audible you want to move a lot of it, so you spread out the power. Lifting a heavy rock with human muscle power is another classic impedance mismatch.

If these are fundamentally all the same problem, then they should all have similar solutions. The gear on the bike or the car, the bridge on a cello, the flared horn on the trumpet, and the lever under the boulder all serve to convert a large force over a short distance or time or area into a lower force over more distance, time, or area.

Pop quiz! What are the common impedance converters in the world of volts and amps? The two that come to my mind are the genafsbezre and the obbfg/ohpx pbairegre (rot13!). What am I missing?

Remoticon 2021 // Jay Bowles Dips Into The Plasmaverse

Every hacker out there is familiar with the zaps and sizzles of the Tesla coil, or the crash and thunder of lighting strikes on our hallowed Earth. These phenomena all involve the physics of plasma, a subject near and dear to Jay Bowles’s heart. Thus, he graced Remoticon 2021 with a enlightening talk taking us on a Dip Into the Plasmaverse.

Jay’s passion for the topic is obvious, having fallen in love with high voltage physics as a teenager. He appreciated how tangible the science was, whether it’s the glow of neon lighting or the heating magic of the common microwave. His talk covers the experiments and science that he’s studied over the past 17 years and in the course of running his Plasma Channel YouTube channel. Continue reading “Remoticon 2021 // Jay Bowles Dips Into The Plasmaverse”

Speed of motion test setup

Simple Setup Answers Complex Question On The Physics Of Solids

Thought experiments can be extremely powerful; after all, pretty much everything that [Einstein] came up with was based on thought experiments. But when a thought experiment turns into a real experiment, that’s when things can get really interesting, and where unexpected insights crop up.

Take [AlphaPhoenix]’s simple question: “Are solid objects really solid?” On the face of it, this seems like a silly and trivial question, but the thought experiment he presents reveals more. He posits that pushing on one end of a solid metal rod a meter or so in length will result in motion at the other end of the rod pretty much instantly. But what if we scale that rod up considerably — say, to one light-second in length. Is a displacement at one end of the rob instantly apparent at the other end? It’s a bit of a mind-boggler.

To answer the question, [AlphaPhoneix] set up a simple experiment with the aforementioned steel rod — the shorter one, of course. The test setup was pretty clever: a piezoelectric sensor at one end of the bar, and a hammer wired to a battery at the other end, to sense when the hammer made contact with the bar. Both sensors were connected to an oscilloscope to set up to capture the pulses and measure the time. It turned out that the test setup was quite a challenge to get right, and troubleshooting the rig took him down a rabbit hole that was just as interesting as answering the original question. We won’t spoil the ending, but suffice it to say we were pleased that our first instinct turned out to be correct, even if for the wrong reasons.

If you haven’t checked out [AlphaPhoenix] yet, you really should. With a doctorate in material science, he’s got an interesting outlook on things, like calculating pi using raindrops or keeping the “ultra” in ultra-high vacuum. Continue reading “Simple Setup Answers Complex Question On The Physics Of Solids”

How Do Capacitors Work?

If you are like [The Science Asylum], you might wonder how a capacitor can work since, at their core, they are nothing more than a gap filled with air or another insulator. He explains how in a recent video you can see below.

Of course, at DC, a capacitor doesn’t conduct any better than the insulator used as its dielectric. However, a DC voltage has to start sometime and when it does, it briefly looks like AC. The video explains it all in simple terms. Of course, if you are math savvy, you can probably get as much out of the normal C=dQ/dV equation.

If that doesn’t speak to you, the explanation in the video about charges will shed some light. He even shows an animation of the classic “hydraulic model”, which is helpful to develop intuition about the process.

Continue reading “How Do Capacitors Work?”

Attack Of The Eighty-Foot String Shooter

String shooters are exciting because they adhere to the laws of physics in that peculiar way that makes us ask, “How?” and “Why?” After a bit of poking and prodding, maybe some light rope burn, we probably have a few ideas on how we’d make our own. [Nick Belsten] and [Joey Rain] saw some desktop models and thought, “Let’s make that puppy eighty feet long!” Video also embedded after the break.

Instead of hobby motors, flashlight batteries, and toy car wheels, they choose a washing machine motor and bike tires, then plug into an extension cord. The three-minute video isn’t a how-to build because once you start welding this kind of hardware together, you are already flying by the seat of your pants. You will see a front yard with people delighting in the absurdity of launching rope continuously over the treetops. There’s plenty of room for observing a wave traveling along the cord or polishing your fingernails in a hurry.

We want to make string shooters for the office and add our personal flavor, like lights or colored string so they’re safe to touch. If you have a unique twist on any physics experiments, drop us a line, but for insurance reasons, we’ll add that you should not make a chainsaw without a guide bar, aka, the forbidden chain-saber.

Continue reading “Attack Of The Eighty-Foot String Shooter”