‘tiny’ Power Supply Monitor

[Manekinen] built a power supply monitor based around an AVR ATtiny13. Voltage and amperage are displayed on a 16×2 LCD character display (we’re not sure what the third number is… samples per second?). This is no small feat considering that the tiny13 is an 8-pin chip. He makes it happen by using the pins for both LCD control and ADC input. To make this happen the HD44780 compliant display is used in 4-bit mode. Check out the video after the break and hit up the non-translated page if you want to download the source code and PCB artwork. A note of warning, he’s using the RESET pin for I/O which means once you burn the fuses you’ll need a programmer that has High Voltage Serial Programming capabilities if you want to reprogram the chip. Continue reading “‘tiny’ Power Supply Monitor”

Jump Start Your Car With Sega Parts

sega_jump_start

[Jenn’s] family is a single-car household. Because of this, it’s a little more difficult to get a jump start when the headlights run down the battery. Not wanting to ask the neighbors for help, her husband [Richard] decided to come up with his own solution.

Rummaging through the parts on hand, [Richard] went with his old friend Sonic the Hedgehog. He used two 12-volt, 1 amp Sega Genesis power adapters in parallel hooked up to a 12 volt, 3 amp  power supply. The end result is a 12-volt 5 amp source hooked to the car’s electrical system and used to get their road machine started.

We have enjoyed some of [Richard’s] offerings in the past, such as Super Nintoaster and the Super Genintari but this is a bit less… eloquent. A few questions do come to mind. First of all, is this the best way to use parts of your 20-year-old gaming system?  How many amps does your average car starter pull down?  And finally, what kind of issues are we looking at with the lead acid battery under these conditions?  Weigh in on the conversation in the comments.

Dual Voltage Power Supply

dual_regualted_power

[Melanie] had some time this weekend so she whipped up a dual voltage power supply from parts on hand. This design plugs right into a breadboard and, unlike the last breadboard power supply we saw, provides two voltages at one time. 5v is delivered to one power bus while 3.3v goes to the other. Her design uses two linear low voltage drop regulators from the LF00 family (PDF datasheet) to accomplish this. Nice work!

Learn From The Ice Tube Clock

icetube

Looks like they’re at it again over at Adafruit. This time they’ve produced a clock that looks more like it should be attached to a munition rather than cruising bedside. But, geek-cred aside, there’s a lot to be learned from their design. Like we’ve grown to expect, they’ve put together some good documentation on their choice of components.

Start off by taking a peek at their 5v power regulator. There is an extra diode on the output side that prevents reverse current from the 3v backup battery. The AVR ATmega168 that controls the clock is used to detect loss of power and quickly shift to the battery backup. They’ve also used the  microcontroller as a boost converter for the high voltage VFD, a nice trick we’ve seen before.

[Thanks pt]

Bench Power Supply Adapter

psu_adapter

Every electronics workbench could benefit from having a bench power supply. Converting a PC power supply works, but often, it involves splicing wires and limits the supply to only bench use, and building one from scratch is definitely an undertaking. To counter this, [silic0re] and his father came up with a detachable adapter that simply plugs into the existing connectors. The adapter provides posts for four different voltages and can be built in no time. It’s nice to see a solution that will let you use any power supply laying around without having to worry about the dangers of opening it or cutting it up.

[Thanks silic0re]

Adjustable Breadboard Supply

breadboardpowersupply

adafruit industries’ latest product is an adjustable breadboard power supply kit. We’ve seen breadboard supplies before, but like most of adafruit’s kits, this is the best design you’re going to encounter. It uses an MIC2941 voltage regulator instead of the more commonplace LM317. It has a very low dropout which means your output voltage can be much closer to the input voltage. Their example is using 3AAA or a Li-Ion battery for an output of 3.3V. Input can be through a barrel jack or terminal blocks. There is a selection switch for 3.3, 5, and adjustable voltage. Using the adjustment pot you can select an output voltage anywhere from 1.3V to within .5V of the 20V maximum input. The adjusted output voltage will remain the same even if you increase the input voltage. Like all of their kits, you can find schematics, assembly and usage instructions, on their project site.

Compaq Motherboard Power Mod

cpq2atx_brd2

Some companies insist on using proprietary pieces. It can be really frustrating when there is no apparent reason other than consumer lock in. It irritates us to feel like we’re being forced to buy their pieces. This is one of the more popular reasons listed when you ask a hacker or modder what got them started.  This project takes us through making a normal power supply work with the compaq proprietary 14 pin plug found in some smaller desktop PCs.

Aside from the plug itself being different, the motherboards require a 3.3v standby voltage. A normal power supply usually only has a 5v. Though there are even simpler ways of bypassing the issue, he chose to put an inline voltage regulator. Schematics are available on the site.

[via Hacked Gadgets]