Look What Came Out Of My USB Charger !

Quick Charge, Qualcomm’s power delivery over USB technology, was introduced in 2013 and has evolved over several versions offering increasing levels of power transfer. The current version — QCv3.0 — offers 18 W power at voltage levels between 3.6 V to 20 V.  Moreover, connected devices can negotiate and request any voltage between these two limits in 200 mV steps. After some tinkering, [Vincent Deconinck] succeeded in turning a Quick Charge 3.0 charger into a variable voltage power supply.

His blog post is a great introduction and walk through of the Quick Charge ecosystem. [Vincent] was motivated after reading about [Septillion] and [Hugatry]’s work on coaxing a QCv2.0 charger into a variable voltage source which could output either 5 V, 9 V or 12 V. He built upon their work and added QCv3.0 features to create a new QC3Control library.

To come to grips with what happens under the hood, he first obtained several QC2 and QC3 chargers, hooked them up to an Arduino, and ran the QC2Control library to see how they respond. There were some unexpected results; every time a 5 V handshake request was exchanged during QC mode, the chargers reset, their outputs dropped to 0 V and then settled back to a fixed 5 V output. After that, a fresh handshake was needed to revert to QC mode. Digging deeper, he learned that the Quick Charge system relies on specific control voltages being detected on the D+ and D- terminals of the USB port to determine mode and output voltage. These control voltages are generated using resistor networks connected to the microcontroller GPIO pins. After building a fresh resistor network designed to more closely produce the recommended control voltages, and then optimizing it further to use just two micro-controller pins, he was able to get it to work as expected. Armed with all of this information, he then proceeded to design the QC3Control library, available for download on GitHub.

Thanks to his new library and a dual output QC3 charger, he was able to generate the Jolly Wrencher on his Rigol, by getting the Arduino to quickly make voltage change requests.

Continue reading “Look What Came Out Of My USB Charger !”

Unlocking 12V Quick Charge On A USB Power Bank

[Robert Nixdorf] frequently needs to use this high-end audio recorder, but it sucks dry a set of eight AA batteries in just a few hours. Obviously a longer lasting solution was required, and he started scouring the web looking for an answer. He bought a Quick Charge power bank and then hacked a Digispark to negotiate with the power bank to provide 12V output to Quick Charge his audio recorder.

Qualcomm’s Quick Charge system is designed to provide increased output voltages to reduce charging time in QC compatible devices such as mobile phones powered by their Snapdragon range of SoC’s. Depending on how the end-point negotiates with the charger, either 5V, 9V or 12V outputs are supported.

You can dig into the details in Qualcomm’s Quick Charge Patent [PDF] which shows how the system works. Quite simply, the voltage provided by the charger depends on the signals set on the D+ and D- data pins during the initial handshaking phase. [Robert] found it easy to get his QC charger to provide the required voltage by using a 3V3 voltage regulator and a resistive divider. But a more permanent solution would be needed if he wanted to use it on the field.

His parts bin revealed a Digispark board and he set about hacking it. He isolated the VUSB from the rest of his board since it would get pulled up to 12V when in use. And then replaced the existing 5V regulator with a 3V3 one. This required several bodges which he has documented on his blog. Some simple code flashed on the ATtiny85 handles all of the handshaking and sets up 12V output to run his audio recorder. A single charge on the power bank now lasts him almost 12 hours, so he’s pretty satisfied with the hack.

Quick Charge is currently at version 4 and supports USB-C and USB-PD hardware such as cables and connectors. But it seems using USB-C hardware outside of the current USB-C specifications is deprecated, with reports suggesting Google is asking OEM’s not to use Quick Charge but stick to USB-PD. Let’s hope this gets settled one way or another soon.

Thanks, [Frank] for the tip.

Bitbanging Qualcomm Charge Controllers

With more and more manufacturers moving to USB-C, it seems as though the trusty USB port is getting more and more entrenched. Not that that’s a bad thing, either; having a universal standard like this is great for simplicity and interconnectability. However, if you’re still stuck with USB 2.0 ports on your now completely obsolete one-year-old phone, there’s still some hope that you can at least get rapid charging. [hugatry] was able to manipulate Qualcomm’s rapid charging protocol to enable it to work with any device.

Continue reading “Bitbanging Qualcomm Charge Controllers”

Qualcomm Buys NXP In Largest Ever Semiconductor Deal

Reuters has reported that Qualcomm will purchase NXP for $38 Billion in the largest semiconductor deal ever.

This deal was rumored last month in a deal worth about $30 Billion. Qualcomm’s name should be familiar to all Hackaday readers – they have an immense portfolio of mobile processors, automotive chips, and a ton of connectivity solutions for WiFi, Bluetooth, and every other bit of the EM spectrum. NXP should also be familiar for their hundreds of ARM devices, automotive devices, and Freescale’s entire portfolio.

The deal for $38 Billion is just a bit larger than the previous largest semiconductor deal, Avago’s purchase of Broadcom for $37 Billion.

This latest acquisition has followed acquisitions of ARM Holdings by Japan’s Softbank, On and Fairchild, Avago and Broadcom, NXP and Freescale, Microchip and Atmel, Intel and Altera, and a few dozen we’re forgetting right now. The good news is this immense industry consolidation won’t result in a single gigantic chip maker; there will probably be two or three gigantic chip companies in the future. If I may dredge up an observation from a Mergers and Acquisition post from this summer, this trend didn’t go well for Hughes, Fairchild, Convair, Douglas, McDonnell Douglas, North American, Grumman, Northrop, Northrop Grumman, Bell, Cessna, Schweizer or Sikorsky. It went very well for Lockheed, Boeing, and Textron.

Qualcomm Looks To Gobble Up NXP

Remember when we talked about NXP merging with Freescale to move into the top ten semiconductor companies? Yeah, that was just eighteen months ago and just barely closed before the new year. Now it looks like Qualcomm wants to acquire NXP to the tune of $30 billion.

You’re most likely familiar with Qualcomm as a cellphone silicon company. The acquisition of NXP opens up a lot of additional markets with their portfolio of chips — automotive among them thanks to the Freescale merger. Now you should be asking yourself just how big Qualcomm is already. What’s perhaps most interesting is that, as mostly a wireless chip company, Qualcomm is ranked number three in worldwide semiconductor sales. Adding NXP — a behemoth now in the top ten — adds at least 30% to Qualcomm’s numbers.

And so here we are, one step close to a monolithic chip fab that produces all computing power for the human race. Yippie!

64bits Of Development Board

Whether we need them or not, we don’t usually shy away from a development board. [Keith] sent us a tip on the DragonBoard 410c after reading our recent coverage of the latest Beagleboard release. Arrow Electronics is manufacturing (and distributing, not surprisingly) the first Qualcomm Snapdragon 400 series based development board. At the time of writing there are two boot images on the 96boards.org site available for download Android 5.1 and an Ubuntu based version of Linux.

The DragonBoard 410c is stuffed with an Arm Cortex-A53 (Arm block diagram after the break) with max speed of 1.2GHz and support for 32bit and 64bit code. It also has on-board GPS, 2.4GHz WiFi, Bluetooth 4.1, full size HDMI connector, a micro USB port that operates in only device mode, two full size USB 2.0 ports for host mode, a micro SD card slot. In the way of GPIO it has a 40 pin low speed connector and a 60 pin high speed connector, there is also an additional 16 pin breakout for analog audio, and the list goes on (follow links above for more info).

For those of you playing buzzword drinking games not to worry, the board can be made Arduino compatible by using the mezzanine connector and there is a plan for the board to be Windows 10 compatible. Better make that a double!

Continue reading “64bits Of Development Board”

Vaio P HSDPA Mod

sim

[tnkgrl] has concluded her Sony Vaio P by adding GSM support. We covered the switch to XP earlier, but this should work on Vista too. The Vaio P is sold in the US with support for Verizon’s EVDO wireless broadband, but it uses the same hardware as the European model that uses GSM. This is possible because of the the Qualcomm Gobi radio module. To get GSM support, you trick the VZAccess Manager into loading a different firmware than the stock EVDO. The difficult part is that the Vaio P doesn’t come with a SIM card slot, so you’ll have to solder in your own. When you’ve got the computer reassembled, just change VZAccess Manager to use your carrier.

UPDATE: Wired has an article on the Gobi chipset.