Rewiring A Free Carnival Sign

Late last September, Hackaday along with other hackerspaces including North Street Labs, 1.21 Jigawatts, Maker Twins, made their way to the NYC Maker Faire via the Red Bull Creation contest. The objectives of the contest were simple: build a game in 72 hours, have people vote on it, and join the Red Bull crew in Queens for a carnival-like atmosphere.

When the Maker Faire was over, Red Bull had some leftover props from their Midway at Maker Faire setup, including a few illuminated carnival signs. Without any use for them, they graciously gave Hackaday, North Street, Maker Twins and the Jigawatts the signs to their respective rides.

Now that things have settled down and the rides have returned to their home base, the folks over at North Street decided to improve their sign. At Maker Fair, these signs were illuminated by 50 incandescent bulbs, all wired on the same circuit. [Steve] over at North Street had the awesome idea of adding a persistence of vision aspect to the sign, so work began on wiring every fourth bulb in series.

To drive the light circuits, North Street repurposed the Arduino Relay shield originally used for the lights on the Centrifury, their competitive centrifuge and spinning hell of a game. In the video after the break, you can see the addition of POV lights really brings out the carnival atmosphere. A literally brilliant build, and a wonderful addition to the scariest game ever made.

Continue reading “Rewiring A Free Carnival Sign”

Cellular Vehicle Information And Control

This hardware, which was built as a Computer Engineering project by [Bryon] and his classmates, gives you feedback and control of a car though a cellular phone network. It uses text messages to communicate with a control device. This can be pretty much any cellphone, but in the clip after the break they show off an Android app which puts a pretty GUI in front of you and abstracts away the tedium of specially formatted messages.

At the heart of the system is an Arduino Mega board. It has a cellular shield with an external antennae for connectivity. A GPS device, relay board, and ODB-II module provide feedback and control to the system. The relays allow the car to be started and the doors to be locked. The GPS and ODB-II module can send back location and vehicle information (anything available from the car’s sensors). There were some issues with the text messages being blocked during testing. The team thinks that the automated back-and-forth triggered some kind of spam filter from the telecom.

There’s still more work to be done if they want to actually drive the car via remote control.

Continue reading “Cellular Vehicle Information And Control”

Home Automation Hack Controls Lights Based On Head Count

This home automation hardware turns on and off the lights based on room occupancy. The hack is an extension of an earlier version that was only a proof of concept. [RPisces] took the idea and made it into reality by mounting the sensor hardware in a doorway.

He prototyped the device using the MSP430 launchpad. It monitors a pair of IR distance sensors which record a change when something passes between them and the opposite side of the hallway. This is a good sensor choice as it only requires hardware on one side of the passageway. Because two of them are used, it’s quite simple to figure out if a person is entering or leaving the room based on which is tripped first.

In this case [RPisces] drives a relay to switch a lamp on and off. But it could be used for just about anything. We’d enjoy seeing it trigger an audio system like the one [Quinn’s] installing in every room.

Art Controller: Relay Board With Switches For Timing

Meet the Art Controller, a new dev board available over at Evil Mad Scientist Laboratories. It provides a drop-in solution for switching higher voltage loads (but not mains). The thing we like most about it is the ability to alter a switching delay without reprogramming the firmware.

The board uses an ATtiny2313 for control. It’s fed regulated 5V power from the on-board 7805 linear regulator. The relay can handle a 24V DC or 40V AC load, which is targeted at an audience that needs electronic switching for art-related devices but doesn’t want the hassle of designing a circuit every time. This offers a single shot, or repeat action, with that bank of DIP switches selecting a delay from once every second, to every 31 hours. It can get its initial trigger from anything that can pull a pin low, like a button, or a coin acceptor.

Keep this in mind. The open source nature of the project means it could come in handy as a reference design.

Word Clock Of A Different Nature

This work clock functions in an unexpected way. With each passing second it displays a random four letter word on the right side of the display. Traditional word clocks tell the time in natural language, but this one is simply used as a learning opportunity.

[Iron Jungle] got his hands on the display for just five buck from Deal Extreme. Looks like the price has gone up two dollars but that’s still a bargain. He wanted to use all eight digits of the display, and was looking for an opportunity to control more than one i2c device at a time. He ended up rolling an EEPROM and DS1307 RTC into the design. He figured the could display 24-hour time on four of the digits, and pull a library of four-letter words off of the EEPROM to fill the rest. He grabbed a word list off of the Internet then used a Python script to remove words containing 7-segment unfriendly characters (K, M, V, W, X, Z). The final touch was to use a salvaged relay to give the clock a ticking sound. Hear it for yourself in the clip after the break.

Continue reading “Word Clock Of A Different Nature”

Bluetooth Control In A Power Strip

[Mansour] had a ceramic space heater mounted near the ceiling of his room. Since heat rises this is not the best design. He upgraded to an infrared heater which works a lot better, but lacks the timer function he used on the old unit. His solution wasn’t just to add a timer. He ended up building a Bluetooth module into a power strip in order to control the device wirelessly. He ends up losing all but two outlets on the strip, but everything fits inside the original case so we think it’s a reasonable trade-off.

He uses relays on both the live and neutral wires to switch the two outlets. These are driven via MOSFETs to protect the ATmega168 which controls the board. The microcontroller and Bluetooth module both need a regulated DC power source, so he included a transformer and regulator in the mix. After the break you can see him demonstrating the system using two lamps. There’s even a terminal interface which lets you select different control commands by sending the appropriate character. This interface makes script a breeze.

At least this power strip doesn’t spy on you.

Continue reading “Bluetooth Control In A Power Strip”

Mechanical Relay Logic That Was Snubbed For A Microcontroller

[Alex] was tasked with a control design problem for a set of motors. The application called for the back of a truck to open up, some 3D scanning equipment to rise from its enclosure, and finally the equipment needed to rotate into place. All of this needed to happen with one flip of a switch, then proceed in reverse when the switch was turned off. We can understand why the final design used a microcontroller, but we also think that [Alex’s] relay logic circuit is an eloquent way of doing things.

He uses limiting switches as the feedback loop for the logic. In the video after the break he walks us through the schematic. Each of the three motors has an up and down limiting switch. These control the three relays which switch power to the motors. We like the design because interrupting the movement mid-operation provides no problem for the system. The only real issue we see is that relays wear out, and the automotive application of the hardware may cause this to happen more quickly than normal.

You may recognize the clear gears used in the demo. [Alex] previously showed us how he makes those.

Continue reading “Mechanical Relay Logic That Was Snubbed For A Microcontroller”