Noble Graphs: Displaying Data With Neon Like Its 1972

In the days before every piece of equipment was an internet-connected box with an OLED display, engineers had to be a bit more creative with how they chose to communicate information to the user. Indicator lights, analog meters, and even Nixie tubes are just a few of the many methods employed, and are still in use today. There are, however, some more obscure (and arguably way cooler) indicators that have been lost to time.

[Aart Schipper] unearthed one such device while rummaging around in his father’s shed: a pair of Burroughs Bar Graph Glow-Transfer Displays. These marvelous glowing rectangles each have two bars (think the left and right signals on an audio meter, which is incidentally what they were often used for), each with 201 neon segments. Why 201, you may ask? The first segment on each bar is always illuminated, acting as a “pilot light” of sorts. This leaves 200 controllable segments per channel. Each segment is used to “ignite” its neighboring segment, something the manufacturer refers to as the “Glow-Transfer Principle.” By clever use of a three-phase clock and some comparators, each bar is controlled by one analog signal, keeping the wire count reasonably low.

Don’t get us wrong, the warm, comforting glow of Nixie tubes will always have a special place in our hearts, but neon bar graphs are just hard to beat. The two do have a similar aesthetic though, so here’s hoping we see them used together in a project soon.

Thanks to [Jan] for the tip!

Preserving Floppy Disks

Time is almost up for magnetic storage from the 80s and 90s. Various physical limitations in storage methods from this era are conspiring to slowly degrade the data stored on things like tape, floppy disks, and hard disk drives, and after several decades data may not be recoverable anymore. It’s always worth trying to back it up, though, especially if you have something on your hands like critical evidence or court records on a nearly 50-year-old floppy disk last written to in 1993 using a DEC PDP-11.

This project all started when an investigation unit in Maryland approached the Bloop Museum with a request to use their antique computer resources to decode the information on a 5.25″ floppy disk. Even finding a floppy disk drive of this size is a difficult task, but this was further compounded not just by the age of the disk but that the data wasn’t encoded in the expected format. Using a GreaseWeazle controlled by a Raspberry Pi, they generated an audio file from the data on the disk to capture all available data, and then used that to work backwards to get to the usable information.

After some more trials with converting the analog information to digital and a clue that the data on the disk was not fragmented, they realized they were looking at data from a digital stenography machine and were finally able to decode it into something useful. Of course, stenography machines are dark magic in their own right so just getting this record still requires a stenographer to make much sense out of it.

Atari Introduces A New Old Console

Readers of a certain age no doubt remember the Atari 2600 — released in 1977, the 8-bit system helped establish the ground rules for gaming consoles as we know them today, all while sporting a swanky faux wood front panel designed to make the system look at home in contemporary living rooms.

Now, nearly 50 years later, the Atari 2600 is back. The new system, imaginatively named the 2600+, looks exactly like the original system, albeit at around 80% scale. It will also work the same way, as the system will actually be able to play original Atari 2600 and 7800 cartridges. This is something of a surprise when compared to the previously released retro consoles from the likes of Sony and Nintendo, as they were all limited to whatever games the company decided to pack into them. Of course, this probably has something to do with the fact that Atari has been selling newly manufactured 2600 games for some time now.

Although it will play original cartridges, it’s still an emulated console at heart. There aren’t a lot of technical details on the product page, but it does say the 2600+ is powered by a Rockchip 3128 SoC with 256 MB of DDR3 RAM and 256 MB eMMC flash. Some quick searching shows this to be a pretty common board for set-top gadgets, and wildly overpowered considering the meager requirements for emulating a game console from 1977. We wouldn’t be surprised to find it’s running some kind of minimal Linux install and using one of the existing open source emulators.

While the 2600+ sports the same 9-pin D-sub controller connectors as the original console, it thankfully embraces modern display technology and outputs over HDMI. Each console will come with a “10-in-1” cartridge that contains some of the console’s most popular titles, as well as a modernized version of the original single-button joystick. (Unlike the original, the 2600+ comes with only a single joystick — the other is sold separately.)

Atari won’t start shipping the 2600+ until this fall, but they’re currently taking preorders for the $130 system. We’re eager to see somebody pull it apart, as the earlier “mini” consoles ended up being ripe for hacking.

Continue reading “Atari Introduces A New Old Console”

Restoring A 45 Year Old Video Game

When we say vintage video game, some of you may think of the likes of Lemmings, Mario or maybe even Donkey Kong but the game that [Vintage Apparatus] restored is slightly older and much more minimalist, using an LED matrix and some 7-segment displays rather than this newfangled color CRT thing.

The front and back covers, buttons and screws of the game on the workbench.
The game is disassembled before cleaning.

[Vintage Apparatus] starts by removing the battery and cover from the 1977 Mattel electronics (American) football game, which uses rather uncommon 2mm triangular screws. To his and our surprise, the circuit board and its beautiful array of LEDs seem to be in excellent condition, so he moves on to cleaning the case itself.

The case, on the other hand, is a bit dirty on the outside, so [Vintage Apparatus] takes out the buttons and starts cleaning with the back cover a Q-tip. After a bit of scrubbing and some extra care to avoid removing any stickers, he moves on to the considerably dirtier and somewhat scratched front case. After some wrestling with the creases and speaker grill of the front cover, the outside of the front case looks nice and clean. Finally, he puts back the buttons and circuit board in the front cover before adding closing it all up with the back cover and screwing it back together.

The game, which immediately comes to life and was actually made by the Mattel calculator division, is a sort of evasion game where the player is a bright dot that can move forward, up or down. The player avoids the dimmer dots, the “tacklers”, in order to run as far as possible as fast as possible. When one of the tacklers tackles the player, the amount of downs is increased and the fifth down means game over. After either scoring or getting downed one too many times, the field is flipped and it’s now player 2’s turn.

Video after the break.
Continue reading “Restoring A 45 Year Old Video Game”

Turning Soviet Electronics Into A Nixie Tube Clock

Sometimes you find something that looks really cool but doesn’t work, but that’s an opportunity to give it a new life. That was the case when [Davis DeWitt] got his hands on a weird Soviet-era box with four original Nixie tubes inside. He tears the unit down, shows off the engineering that went into it and explains what it took to give the unit a new life as a clock.

Each digit is housed inside a pluggable unit. If a digit failed, a technician could simply swap it out.

A lot can happen over decades of neglect. That was clear when [Davis] discovered every single bolt had seized in place and had to be carefully drilled out. But Nixie tubes don’t really go bad, so he was hopeful that the process would pay off.

The unit is a modular display of some kind, clearly meant to plug into a larger assembly. Inside the unit, each digit is housed in its own modular plug with a single Nixie tube at the front, a small neon bulb for a decimal point, and a bunch of internal electronics. Bringing up the rear is a card edge connector.

Continues after the break…

Continue reading “Turning Soviet Electronics Into A Nixie Tube Clock”

A Mainframe Computer For The Modern Age

The era of mainframe computers and directly programming machines with switches is long past, but plenty of us look back on that era with a certain nostalgia. Getting that close to the hardware and knowing precisely what’s going on is becoming a little bit of a lost art. That’s why [Phil] took it upon himself to build this homage to the mainframe computer of the 70s, which all but disappeared when PCs and microcontrollers took over the scene decades ago.

The machine, known as PlasMa, is not a recreation of any specific computer but instead looks to recreate the feel of computers of this era in a more manageable size. [Phil] built the entire machine from scratch, and it can be programmed directly using toggle switches to input values into registers and memory. Programs can be run or single-stepped, and breakpoints can be set for debugging. The internal workings of the machine, including the program counter, instruction register, accumulator, and work registers, are visible in binary lights. Front panel switches let you control those same items.

The computer also hosts three different microcodes, each providing a unique instruction set. Two are based on computers from Princeton, Toy-A, and Toy-B, used as teaching tools. The third is a more advanced instruction set that allows using things like emulated peripherals, including storage devices. If you want to build one or just follow along as the machine is constructed, programmed, and used, [Phil] has a series of videos demonstrating its functionality, and he’s made everything open-source for those more curious. It’s a great way to get a grasp on the fundamentals of computing, and the only way we could think of to get even more into the inner workings of a machine like this is to build something like a relay computer.

Continue reading “A Mainframe Computer For The Modern Age”

Recreating The Golden Era Of Cable TV

Fewer and fewer people have cable TV subscriptions these days, due to a combination of poor business practices by cable companies and the availability of alternatives to cable such as various streaming platforms. But before the rise of the Internet that enabled these alternatives, there was a short period of time where there were higher-quality channels, not too many commercials, a possibly rose-tinted sense of wonder, and where MTV actually played music. [Irish Craic Party] created this vintage cable TV network to capture this era of television history.

The hardware for this build is a Raspberry Pi driving an LCD display recovered from an old iPad. There’s a custom TV tuner which handles changing the channels and interfaces with an Apple Remote. Audio is sent through old computer speakers, and the case is built from 3D printed parts and some leftover walnut plywood to give it an era-appropriate 80s or early 90s feel. We’ve seen other builds like this before, but where this one really sets itself apart is in the software that handles the (television) programming.

[Irish Craic Party] has gone to great lengths here to recreate the feel of cable TV from decades ago. It has recreations of real channels like HBO, Nickelodeon, and FX including station-appropriate bumpers and commercials. It’s also synchronized to the clock so shows start on the half- or quarter-hour. Cartoons play on Saturday morning, and Nickelodeon switches to Nick-at-Nite in the evenings. There are even channels that switch to playing Christmas movies at the appropriate times, complete with Christmas-themed commercials.

The build even hosts a preview channel, one of the more challenging parts of the build. It continually scrolls through the channels and shows what’s currently playing and what will be showing shortly, complete with a commercial block at the top. For those who were around in the 90s it’s almost a perfect recreation of the experience of watching TV back then. It can even switch to a video game input when tuned to channel 3. There’s almost too much to go into in a short write-up so be sure to check the video after the break.

Thanks to [PCrozier] for the tip!

Continue reading “Recreating The Golden Era Of Cable TV”