The TS100 smart soldering iron may have some new competition. Pine — the people best known for Linux-based phones and laptops — though the world needed another smart soldering iron so they announced the Pinecil — Sort of a knock off of the TS100. It looks like a TS100 and uses the same tips. But it does have some important differences.
It used to be a soldering iron was a pretty simple affair. Plug in one end; don’t touch the other end. But, eventually, things got more complicated and you wanted some way to make it hotter or cooler. Then you wanted the exact temperature with a PID controller. However, until recently, you didn’t care how much processing power your soldering iron had. The TS100 changed that. The smart and portable iron was a game-changer and people not only used it for soldering, but also wrote software to make it do other things. One difference is that the device has a RISC-V CPU. Reportedly, it also has better ergonomics and a USB C connector that allows for UART, I2C, SPI, and USB connections. It also has a very friendly price tag of $24.99.
Monty Python once did a sketch where people tried to summarize Proust in fifteen seconds. Although summarizing eight FPGA-based CPUs is almost as daunting, [jaeblog] does a nice job of giving a quick sketch of how the CPUs work with the Xilinx Vivado toolchain and the Digilent Arty board.
The eight CPUs are: VexRiscv, LEON3, PicoRV32, Neo430, ZPU, Microwatt, S1 Core, and Swerv EH1.
The comparison criteria were very practical: A C compiler (gcc or llvm) for each CPU and no CPUs that were tied to a particular FPGA. Two of the CPUs didn’t fit on the Arty board, so their comparisons are a bit more theoretical. There were other considerations such as speed, documentation, debugging support, and others.
It was interesting to see the various CPUs ranging from some very mature processors to some new kids on the block, and while the evaluations were somewhat subjective, they seemed fair and representative of the things you’d look for yourself. You can also get the test code if you want to try things for yourself.
The winner? The post identifies three CPUs that were probably the top choices, although none were just perfect. Of course, your experience may vary.
If you want an easy introduction to adding things to a soft CPU, this RISC-V project is approachable. Or if you prefer SPARC, check out this project.
Kids of the 1990’s would call you a liar if you told them that within thirty years you’d go to a conference and be handed a Super Nintendo Entertainment System to wear around your neck. But that’s what happened with the badge Jeroen Domburg, aka [Sprite_TM], designed for the 2019 Hackaday Superconference. It’s built in the Game Boy form factor, complete with a cartridge slot, beautiful screen, and the familiar button layout. But there’s so much more here, like the HDMI port on the bottom and the ability to completely reconfigure the device by dropping a binary file onto it over USB.
Of course what makes this possible is the FPGA at the heart of the design. The story of how the badge was developed is shared in great detail during Sprite’s Supercon talk. The timeline, the hardware choices, and the oopses along the way make for a great story. But what you really don’t want to miss is how he built the machine inside of the FPGA — the collection of Verilog code known as “gateware” that brings together the System-on-a-Chip (SoC). From his delight at being able to spawn more processor cores by changing a single variable, to the fascinating SNES-inspired graphics subsystem, the inside story shared below is even more interesting than the physical device itself.
The 2019 Hackaday Superconference kicked off with a marvelous, and marvelously geeky, keynote talk on the subject of RISC-V by Dr. Megan Wachs. She is VP of Engineering at SiFive, a company that makes RISC-V processors in silicon, but the talk is a much more general introduction to the RISC-V open instruction-set architecture (ISA) and why you’d care. The short answer to the latter is the same reason you care about any other open standard: it promotes interoperability, reusable toolchains, and will result in us all having access to better and faster CPUs.
The video is embedded below, and it’s absolutely worth a watch. Unfortunately, The video is missing the first few minutes, you can follow along through her slides (PDF) and read through our brief recap below of what fell down the video hole.
The project took inspiration from another hacker’s work in building a RISC-V emulator; shared in the Hackaday FPGA chat. He took it a bit further and got it going on an UPDuino v2.0 board which features a iCE40 FPGA from Lattice.
The board passes all the tests for the RISC-V subset he’s aiming for and even run some Zephry RTOS examples. He’s done a really good job of documenting how he got the code to run as well as many of the experiments he’s run so far. All the project files for ICEcube2 software are posted. It’s not the only RISC-V CPU we’ve seen in an FPGA, but the code is actually very clear and worth a read if you’re into such things.
We think anyone interested in duplicating his work could do so somewhat easily and start playing around with this increasingly popular architecture. Or at least get some LED’s blinking in an arcane but meaningful way. Video after the break.
A computer processor uses a so-called Instruction Set Architecture to talk with the world outside of its own circuitry. This ISA consists of a number of instructions, which essentially define the functionality of that processor, which explains why so many ISAs still exist today. It’s hard to find that one ISA that works for as many distinct use cases as possible, after all.
A fairly new ISA is RISC-V, the first version of which was created back in 2010 at the University of California, Berkeley. Intended to be a fully open ISA, targeting both students (as a learning tool) and industrial users, it is claimed to incorporate a number of design choices that should make it more attractive for a number of applications.
In this article I’ll take a look behind the marketing to take stock of how exactly RISC-V differs from other open ISAs, including Power, SPARC and MIPS.
Hackaday has open-source running deep in our veins — and that goes for hardware as well as software. After all, it’s great to run open-source software, but if it’s running on black-box hardware, the system is only half open. While software has benefited mightily from all of the advantages of community development, the hardware world has been only recently catching up. And so we’ve been following the RISC-V open-source CPU development with our full attention.
Our keynote speaker for the 2019 Hackaday Superconference is Dr. Megan Wachs, the VP of Engineering at SiFive, the company founded by the creators of the RISC-V instruction-set architecture (ISA). She has also chaired the RISC-V Foundation Debug Task Group, so it’s safe to say that she knows RISC-V inside and out. If there’s one talk we’d like to hear on the past, present, and future of the architecture, this is it.
The RISC-V isn’t a particular chip, but rather it’s a design for how a CPU works, and a standard for the lowest-level language that the machine speaks. In contrast to proprietary CPUs, RISC-V CPUs from disparate vendors can all use the same software tools, unifying and opening their development. Moreover, open hardware implementations for the silicon itself mean that new players can enter the space more easily, bring their unique ideas to life faster, and we’ll all benefit. We can all work together.
It’s no coincidence that this year’s Supercon badge has two RISC-V cores running in its FPGA fabric. When we went shopping around for an open CPU core design, we had a few complete RISC-V systems to pick from, full compiler and development toolchains to write code for them, and of course, implementations in Verilog ready to flash into the FPGA. The rich, open ecosystem around RISC-V made it a no-brainer for us, just as it does for companies making neural-network peripherals or even commodity microcontrollers. You’ll be seeing a lot more RISC-V systems in the near future, on your workbench and in your pocket.
We’re tremendously excited to hear more about the project from the inside, and absolutely looking forward to Megan’s keynote speech!
The Hackaday Superconference is completely sold out, but that doesn’t mean that you have to miss out. We’ll be live-streaming the keynote and all other talks on the Supercon main stage, so subscribe our YouTube channel and you won’t miss a thing.