Pool Playing Robot Destined For Trouble In River City

You’d think pool should be an easy game for a robot to play, right? It’s all math — geometry to figure out the angles and basic physics to deal with how much force is needed to move the balls. On top of that, it’s constrained to just two dimensions, so it should be a breeze.

Any pool player will tell you there’s much, much more to the game in real life, but still, a robot to play pool against would be a neat trick. As a move toward that goal, [BVarv] wisely decided on a miniature mockup of a pool-playing robot, and in the process reinvented the pool table itself. Realizing that a tracked or wheeled robot would have a tough time maneuvering around the base of a traditional pool table, his model pool table is a legless design that looks like something from IKEA. But the pedestal support allows the robot to be attached to the table and swing around in a full circle, and this allowed him to work through the kinematics as shown in the charming stop-action video below.

[BVarv] has gotten as far as motion control on the swing axis, as well as on the arms that will eventually hold the cue. He plans overhead image analysis for identifying shots, and of course there’s the whole making it full-size thing to do. We’d love to play a game or two against a bot, so we hope he gets there. In the meantime, how about a little robo-air hockey?

Continue reading “Pool Playing Robot Destined For Trouble In River City”

Butter Passing Battlebot

The idea of purpose is one of great importance to many sentient beings; one can only imagine the philosophical terror experienced by a robot designed solely to pass butter. Perhaps wishing to create a robot with more reason to exist, [Micah “Chewy” Leibowitz] decided to build this battlebot armed with a flamethrower, named Flamewar.

In the video, we see it rather successfully facing off against a robot named T800, at least in the early part of the fight. T800 is armed with a spinning weapon, and while it is able to deliver a heavy thump thanks to stored kinetic energy, more often than not T800 seems to knock itself over rather than do any serious damage to Flamewar. Flamewar is repeatedly able to fire its primary weapon, as the flamethrower is built into its arms, far above the reach of T800’s armament. We won’t spoil the ending of the fight. Video below the break.

The robot was built by [Micah] who competes with [Team Tiki], who have documented some of their past builds online. We would like to see some footage of Flamewar actually passing some butter, though. The bout was a part of Robogames 2017, and we’re impressed that such things like flamethrowers are allowed in the rules. Obviously safety is a paramount concern of these events, so it’s awesome to see they’ve found a way to make things work.

If you’re unaware of the dairy product reference, fill yourself in here. We’ve seen other takes on this, too.

We love seeing combat robots here at Hackaday. If you’re thinking about getting started yourself, why not get started with an ant-weight bot to cut your teeth?

Continue reading “Butter Passing Battlebot”

Ancient Robot Creates Modern Art

They say that there’s more to a Jackson Pollock painting than randomly scattering paint on a canvas, and the auction value of his work seems to verify that claim. If you want to create some more conventional artwork, however, but are missing the artistic muse that inspired Pollock, maybe you can put your creative energies to work building a robot that will create the art for you.

[Dane Kouttron] was able to get his hands on an old SCARA robotic arm, and was recently inspired to create a paintbrush-weilding robot with it for the 2nd Annual Robot Art competition. Getting one of these ancient (circa 1983) robots working again is no easy task though. [Dane] used LinuxCNC to help reverse engineer the robot’s controls and had to build a lot of supporting hardware to get the extremely heavy robot to work properly. The entire process took around two months, and everything from color selection to paint refill to the actual painting itself is completely automated.

Be sure to check out the video after the break to see the robot in action. The writeup goes into great detail about the robot, and includes everything from reverse engineering the encoders to auto-cleaning a paintbrush. If you don’t have a SCARA robot arm in your parts drawer, though, there are lots of other options to explore for robot-created artwork.

Continue reading “Ancient Robot Creates Modern Art”

Robotic Glockenspiel And Hacked HDD’s Make Music

[bd594] likes to make strange objects. This time it’s a robotic glockenspiel and hacked HDD‘s. [bd594] is no stranger to Hackaday either, as we have featured many of his past projects before including the useless candle or recreating the song Funky town from Old Junk.

His latest project is quite exciting. He has incorporated his robotic glockenspiel with a hacked hard drive rhythm section to play audio controlled via a PIC 16F84A microcontroller. The song choice is Axel-F. If you had a cell phone around the early 2000’s you were almost guaranteed to have used this song as a ringtone at some point or another. This is where music is headed these days anyway; the sooner we can replace the likes of Justin Bieber with a robot the better. Or maybe we already have?

Continue reading “Robotic Glockenspiel And Hacked HDD’s Make Music”

Look At Me With Your Special Animatronic Eyes

Animatronics for movies is often about making something that works and is reliable in the short term. It doesn’t have to be pretty, it doesn’t have to last forever. [Corporate Sellout]  shows us the minimalist approach to building animatronics with this pair of special eyes.  These eyes move in both the pan and tilt. Usually, that means a gimbal style mount. Not in this case. The mechanical assembly consists of with popsicle sticks, ping-pong balls, film canisters and dental floss.

The frame for the eyes is made of simple popsicle sticks hot glued together. The eyes themselves are simple ping-pong balls. Arduino powered servos control the movement. The servos are connected to dental floss in a cable arrangement known as a pull-pull system. As each servo moves, one side of the arm pulls on a cable, while the other provides enough slack for the ping-pong ball to move.

Mounting the ping-pong balls is the genius part of this build. They simply sit in the open end of a couple of film canisters. the tension from the dental floss holds everything together. We’re sure it was a finicky setup to build, but once working, it’s reliable. Only a glue joint failure or stretch in the dental floss could cause issues.

There are plenty of approaches to Animatronic eyes. Check out the eyes in this Stargate Horus helmet, which just won our Sci-Fi contest. More recently we saw Gawkerbot, which uses a CD-ROM drive to provide motion for a creepy robot’s eyes.

Continue reading “Look At Me With Your Special Animatronic Eyes”

Papa Loves Mamba: Slithering Robot Is Reconfigurable

It makes sense considering evolution, but nature comes up with lots of different ways to do things. Consider moving. Land animals walk on four feet or two, some jump, and some use peristalsis or otherwise slither. Oddly, though, mother nature never developed the wheel (although the mother-of-pearl moth’s caterpillar will form its entire body into a hoop and roll away from attackers). Human-developed robots which, on the other hand, most often use wheels. Even a tank track has wheels within. [Joesinstructables] latest robot still uses wheels, but it emulates the slithering motion of a snake, He calls it the Lake Erie Mamba.

The most interesting thing about the robot is that it can reconfigure and move in several different modalities. Like the caterpillar, it can even form a wheel like an ouroboros and roll. You can see that at the end of the video, below.

Continue reading “Papa Loves Mamba: Slithering Robot Is Reconfigurable”

Gawkerbot Is Watching You

While sick with the flu a few months ago, [CroMagnon] had a vision. A face with eyes that would follow you – no matter where you walked in the room. He brought this vision to life in the form of Gawkerbot. This is no static piece of art. Gawkerbot’s eyes slowly follow you as you walk through its field of vision. Once the robot has fixed its gaze upon you, the eyes glow blue. It makes one wonder if this is an art piece, or if the rest of the robot is about to pop through the wall and attack.

Gawkerbot’s sensing system is rather simple. A PIR sensor detects motion in the room. If any motion is detected, two ultrasonic sensors which make up the robot’s pupils start taking data. Code running on an ATmega328 determines if a person is detected on the left or right, and moves the eyes appropriately.

[CroMagnon] used an old CD-ROM drive optics sled to move Gawkerbot’s eyes. While the motor is small, the worm drive has plenty of power to move the 3D-printed eyes and linkages. Gawkerbot’s main face is a 3D-printed version of a firefighter’s smoke helmet.

The ultrasonic sensors work, but it took quite a bit of software to tame the jitters noisy data stream. [CroMagnon] is thinking of using PIR sensors on Gawkerbot 2.0. Ultrasonic transducers aren’t just for sensing. Given enough power, you can solder with them. Ultrasonics even work for wireless communications.

Check out the video after the break to see Gawkerbot in action.

Continue reading “Gawkerbot Is Watching You”