Cheap Flamethrower Is Predictably Worrying

We’d never criticize somebody for coming up with a creative way to save a few bucks. In truth, pickings would be pretty slim around here if we deleted every project or hack where cost savings was a prime motivator. That being said, there’s still some things you should probably spend a few extra dollars on. You know, the essential things in life that you need to know will be safe and reliable, like your car and…your flamethrower.

While we don’t have any information about what kind of car [Steve Hernandez] is driving, but over on Hackaday.io, he’s posted some info about his 3D printed wrist-mounted flamethrower. The final result does look pretty impressive, but given the subject matter and the lack of any safety gear, we would firmly plant it in the “Don’t try this at home” category.

At the heart of this flamethrower is a solenoid valve recovered from a Glade air freshener. Rather than spraying out the smell of lilacs, this valve has found a new purpose in life by squirting out butane from a pressurized can. The butane is then ignited by a spark gap made up two nails connected to a 300 kV boost coil.

[Steve] designed the frame of this creation in OpenSCAD, and printed it out in a single piece. It holds the butane can and solenoid in position, as well as keeping the nails in the proper orientation for the spark gap to function. Admittedly the head of his printed flamethrower does look very cool, but if there was ever a situation where you should be suspect of the heat tolerance of 3D printed plastic, a flamethrower is probably it.

What’s noticeably lacking of course is any method to keep the flame from potentially traveling back up through the valve and into the butane can. The high-speed flow coming out of the nozzle is probably enough to keep that from happening, but we still wouldn’t feel comfortable strapping his device to our wrist as-is.

You may be surprised to find that wrist-mounted flamethrowers are a relatively popular project here at Hackaday. We’ve covered quite a few over the years, but still aren’t convinced this is something we personally need to add to our collection of gear.

From Foot Pump Cylinders To Pneumatic Robot Fighting Arm

Halfords Essentials foot pump
Halfords Essentials foot pump

[James Bruton] is well known for making robots using electric motors but he’s decided to try his hand at using pneumatics in order to make a fighting robot. The pneumatic cylinders will be used to give it two powerful punching arms. In true [James Bruton] fashion, he’s started with some experiments first, using the pneumatic cylinders from foot pumps. The cylinders he’s tried so far are taken out of single cylinder foot pumps from Halfords Essentials, costing only £6.29, around $8.11 US. That’s far cheaper than a commercial pneumatic cylinder, and perfectly adequate for this first step.

He did have to hack the cylinder a little though, besides removing it from its mounting and moving it to a DIY frame. Normally when you step down on a foot pump’s lever, you compress the cylinder, forcing air out the hose and into whatever you’re inflating. But he wanted to push air in the other direction, into the hose and into the cylinder. That would make the cylinder expand and thereby extend a robot fighting arm. And preferably that would be done rapidly and forcefully. However, a check valve at the hose outlet prevented air from entering the cylinder from the hose. So he removed the check valve. Now all he needed was a way to forcefully, and rapidly, push air into the hose.

For that he bought a solenoid activated valve on eBay, and a compressor with a 24 liter reservoir and a decent air flow rate of 180 liters per minute. The compressor added £110 ($142) to the cost of his project but that was still cheaper than the batteries he normally buys for his electric motor robots.

After working his usual CAD and 3D printing magic, he came up with an arm for the cylinder and a body that could fit two more valve activated cylinders to act as a working shoulder. A little more 3D printing and electronics, and he had 3 switches, one for each valve and cylinder. He then had the very successful results his experiment. You can see the entire R&D process in the video below, along with demonstrations of the resulting punching robot arm. We think it’s fairly intimidating for a first step.

Continue reading “From Foot Pump Cylinders To Pneumatic Robot Fighting Arm”

Computer Controlled Water Show

watershow

After seeing our recent post on Laminar Flow Nozzles, [Richard] decided to share with us his family’s summer project — a computer controlled water show (translated)!

The setup uses a Raspberry Pi at its core and a set of USB relay boards to turn the valves and lights on and off to the music. They wrote the program in Python and have posted it on their website to share.

They used common household solenoid valves because they are easy to control by relay, but unfortunately they are on/off only, so variable flow is not possible. A challenge they encountered was equalizing the water pressure — one to make sure the pump didn’t over heat when the fountains were off, and two, to equalize the height of each fountain stream. To solve this they used a pressure regulator for the pump, and organized the plumbing in such a way with additional control valves that the pressure differences were minimal.

The setup doesn’t sound like it cost that much, and now the family has their own music activated water fountain in their garden — how awesome is that! Stick around after the break to see it in action.

Continue reading “Computer Controlled Water Show”