Making A Mechanical Watch From Scratch Is Fine Work

There are plenty of hard jobs out there, like founding your country’s nuclear program, or changing the timing chain on a BMW diesel. Making your own mechanical watch from scratch falls under that umbrella, too. And yet, [John Raffaelli] did just that, and prevailed!

That’s a lot of work.

Only a handful of components were purchased—[John] grabbed jewels, sapphire crystals, the strap, and the hairspring and mainspring off the shelf. Everything else, he made himself, using a fine touch, a sharp eye, and some deft work on his machine tools. If you’ve never worked at this scale before, it’s astounding to see—[John] steps through how he produced tiny pinions and balance wheels that exist at sub-fingertip scale. Even just assembling something this tiny would be a challenge, but [John] was able to craft it all from scratch and put it together into a functioning timepiece when he was done.

The final piece doesn’t just look great—we’re told it keeps good time as well. People like [John] don’t come along every day, though we do have one similar story in our deep archives from well over a decade ago. If you’re cooking up your own bespoke time pieces in your home workshop, don’t hesitate to drop your story on the tipsline!

Hackaday Links Column Banner

Hackaday Links: November 24, 2024

We received belated word this week of the passage of Ward Christensen, who died unexpectedly back in October at the age of 78. If the name doesn’t ring a bell, that’s understandable, because the man behind the first computer BBS wasn’t much for the spotlight. Along with Randy Suess and in response to the Blizzard of ’78, which kept their Chicago computer club from meeting in person, Christensen created an electronic version of a community corkboard. Suess worked on the hardware while Christensen provided the software, leveraging his XMODEM file-sharing protocol. They dubbed their creation a “bulletin board system” and when the idea caught on, they happily shared their work so that other enthusiasts could build their own systems.

Continue reading “Hackaday Links: November 24, 2024”

Droplet Watch Keeps Time Via Electrowetting

Hackers just can’t help but turn their sights on timepieces, and [Armin Bindzus] has designed an electrowetting-based watch.

Electrowetting is a way of changing the contact angle of droplets on a surface using electricity, and can be used to move said droplets. The liquid needs to be polar, so in this case [Bindzus] has used a red ink mixed with mono-ethylene glycol to stand out against the white dielectric back of the device. The 60 individual electrodes of the bottom section were etched via laser out of the ITO-coated glass that makes up the bottom plates of the face.

The top plate houses the small round pillars that keep the ink constrained to its paths. They are made of a photosensitive epoxy that is spin-coated onto the glass and then cured via the laser. The plates are put together at a distance of 0.23 mm with epoxy, but a small hole is left to insert the droplets and a filler liquid. An Attiny1614 microcontroller runs the show along with a DS3231 RTC. A 46V signal drives the droplets around their path.

It seems this project is a bit away from true wearable use, but perhaps [Bindzus] could make a desk clock first? If you’re interested in another ink-based, watch, how about this custom E-Ink Tank watch?

Continue reading “Droplet Watch Keeps Time Via Electrowetting”

A Tuning Fork Clock, With Discrete Logic

[Willem Koopman aka Secretbatcave] was looking at a master clock he has in his collection which was quite a noisy device, but wanted to use the matching solenoid slave clock mechanism he had to hand. Willem is a fan of old-school ‘sector’ clocks, so proceeded to build his ideal time piece — Vibrmatic — exactly the way he wanted. Now, since most time keeping devices utilise a crystal oscillator — which is little more than a lump of vibrating quartz — why not scale it up a bit and use the same principle, except with a metal tuning fork? (some profanity, just to warn you!)

Shock-mounted tuning force oscillator

A crystal oscillator operates in a simple manner; you put some electrical energy in, it resonates at its natural frequency, you sense that resonance, and feed it back into it to keep it sustaining. With a tuning fork oscillator, the vibration forcing and the feedback are both done via induction, coils act as the bridge between the electronic and mechanical worlds.

By mounting the tuning fork onto a shock mounting, the 257 Hz drone was kept from leaking out into the case and disturbing the household. This fork was specified to be 256 Hz, but [Willem] reckons the drag of the electromagnets pushed it off frequency a bit. Which make sense, since its a mechanical system, that has extra forces acting upon it.

The sector face was CNC cut from aluminium, the graphics engraved, then polished up a bit. Finally after a spot of paint, it looks pretty smart. Some nice chunks of upcycled wood taken from some building work spoils formed the exposed enclosure. On the electronics side, after totally ignoring the frequency error, and then tripping over a bunch of problems such as harmonics in the oscillation, and an incorrectly set-up divider, a solution which seemed to work was found, but like always, there are quite a few more details to the story to be found in the build log.

We’ve seen a tuning fork clock recently, like this 440 Hz device by [Kris Slyka] that the project above references, and whilst we’re talking about tuning forks, here’s a project log showing the insides of those ubiquitous 32.768 kHz crystal units.

Astronomical clock

An Astronomical Mechanical Clock, In More Ways Than One

If the workings of a mechanical timepiece give you a thrill, prepare to be blown away by this over-the-top astronomical clock.

The horological masterpiece, which was designed by [Mark Frank] as his “dream clock”, is a riot of brass, bronze, and steel — 1,200 pounds (544 kg) of it, in fact, at least in the raw materials pile. Work on the timepiece began in 2006, with a full-scale mockup executed in wood by Buchannan of Chelmsford, the Australian fabricator that [Mark] commissioned to make his design a reality. We have a hard time explaining the design, which has just about every horological trick incorporated into it.

[Mark] describes the clock as “a four train, quarter striking movement with the fourth train driving the astronomical systems,” which sounds far simpler than the finished product is. It includes 52 “complications,” including a 400-year perpetual calendar, tide clock, solar and lunar eclipse prediction, a planisphere to show the constellations, and even a thermometer. And, as if those weren’t enough, the clock sports both a tellurion to keep track of the Sun-Earth-Moon system and a full orrery out to the orbit of Saturn, including all the major moons. The video below shows the only recently finished masterpiece in operation.

[Mark]’s dream clock has been under construction for the better part of two decades, and we applaud not just his design but his patience. The skeletonized construction reminds us of the Clickspring clock from a few years back; now seems like a great time to go back and binge-watch that whole series again.

Continue reading “An Astronomical Mechanical Clock, In More Ways Than One”

Rows of nixie tubes in clear acrylic

Binary Clock Lets The Nixies Glow

We’re not here to talk about another clock. Okay, we are, but the focus isn’t about whether or not it can tell time, it’s about taking a simple idea to an elegant conclusion. In all those ways, [Marcin Saj] produced a beautiful project. Most of the nixie clocks we see are base-ten, but this uses base-two for lots of warm glow from more than a dozen replaceable units.

There are three rows for hours, minutes, and seconds. The top and bottom rows are labeled with an “H” and “S” respectively displayed on IN-15B tubes, while the middle row shows an “M” from an IN-15A tube. The pluses and minuses light up on IN-12 models so you’ll need eighteen of them for the full light show, but you could skimp and use sixteen in twelve-hour mode since you don’t need to count to twenty-four. We won’t explain how to read time in binary, since you know, you’re here and all. The laser-cut acrylic is gorgeous with clear plastic next to those shiny nixies, but you have to recreate the files or buy the cut parts as we couldn’t find vector files amongst the code and schematics.

Silly rabbit, nixies aren’t just for clocks. You can roll your own, but they’re not child’s play.

Continue reading “Binary Clock Lets The Nixies Glow”

Watch Winder Keeps Your Timepieces Ticking

Mechanical watches are triumphs of engineering on a tiny scale. Capable of keeping time by capturing the energy of the user’s own movements, they never need batteries changed. Unfortunately, they quickly lose time when not worn for a few days. To solve that problem, [sblantipodi] built a smart watch winder.

The overall build consists of six individual winder units. Each one has an ESP8266EX D1 Mini microcontroller, hooked up to a 28BYJ48 stepper motor with a ULN2003 motor driver. There’s also an OLED screen for status information. When commanded, the stepper motor turns, rotating a watch case to wind the timepieces. Control is via voice command, thanks to a Google Home Mini and a Raspberry Pi running Home Assistant. Watches can be wound individually, or all together, depending on the command given.

It’s a device that would serve any collector well, and could come in handy for watchmakers to wind customer watches waiting for pickup. Other similar builds have used special silent drives to ensure the device doesn’t disturb sleep when used on a bedside table. Video after the break.

Continue reading “Watch Winder Keeps Your Timepieces Ticking”