Tiny Drones Do Distributed Mapping

Sending teams of tiny drones to explore areas and structures is a staple in sci-fi and research, but the weight and size of sensors and the required processing power have long been a limiting factor. In the video below, a research team from [ETH Zurich] breaks through these limits, demonstrating indoor mapping with a swarm of tiny drones without dependence on any external systems.

The drone is the modular Crazyflie platform, which uses stackable PCBs (decks) to expand capabilities. The team added a Flow deck for altitude control and motion tracking, and a Loco positioning deck with a UWB module determining relative distances between drones. On top of this, the team added two custom decks. The first mounts four VL53L5CX 8×8 pixel TOF sensors for omnidirectional LIDAR scanning. The final deck does handles all the required processing with a GAP9 System-on-Chip, which features 10 RISC-V cores running on just 200 mW of power.

Of course the special sauce of this project lies in the software. The team developed a lightweight collaborative Simultaneous Localization And Mapping (SLAM) algorithm which can be distributed across all the drones in the swarm. It combines LIDAR scan data and the estimated position of the drone during the scan, and then overlays the data for the scans for each location across different drones, compensating for errors in the odometry data. The team also implemented inter-drone collision avoidance, packet collision avoidance and optimizing drones’ paths. The code is supposed to be available on GitHub, but the link was broken at the time of writing.

The Crazyflie platform has been around for more than a decade now, and we’ve seen it used in several research projects, especially related to autonomous navigation. Continue reading “Tiny Drones Do Distributed Mapping”

A Little Optical Magic Makes This Floating Display Pop

If there’s a reason that fancy holographic displays that respond to gestures are a science fiction staple, it’s probably because our current display technology is terrible. Oh sure, Retina displays and big curved gaming monitors are things of wonder, but they’re also things that occupy space even when they’re off — hence the yearning for a display that can appear and disappear at need.

Now, we’re not sure if [Maker Mac70]’s floating display is the answer to your sci-fi dreams, but it’s still pretty cool. And, as with the best of tricks, it’s all done with mirrors. The idea is to use a combination of a partially reflective mirror, a sheet of retroreflective material, and a bright LCD panel. These are set up in an equilateral triangle arrangement, with the partially reflective mirror at the top. Part of the light from the LCD bounces off the bottom surface of the mirror onto a retroreflector — [Mac] used a sheet of material similar to what’s used on traffic signs. True to its name, the retroreflector bounces the light directly back at the semi-transparent mirror, passing through it to focus on a point in space above the whole contraption. To make the display interactive, [Mac] used a trio of cheap time-of-flight (TOF) sensors to watch for fingers poking into the space into which the display is projected. It seemed to work well enough after some tweaking; you can check it out in the video below, which also has some great tips on greebling, if that’s your thing.

We suspect that the thumbnail for the video is a composite, but that’s understandable since the conditions for viewing such a display have to be just right in terms of ambient light level and the viewer’s position relative to the display. [Mac] even mentions the narrow acceptance angle of the display, touting it as a potential benefit for use cases where privacy is a concern. In any case, it’s very different from his last sci-fi-inspired volumetric display, which was pretty cool too.

Continue reading “A Little Optical Magic Makes This Floating Display Pop”

Make A Super Cute LiDAR Measurement Module

This ultra-cute tiny LiDAR rangefinder project by [gokux] can be thought of as a love letter to the incredible resources and components hobbyists and hackers of all types have access to nowadays. In fact, it all stemmed from coming across a miniscule half-inch 64×32 OLED display module that was simply too slick to pass up.

USB connector for charging on the bottom, hole for distance sensor out the top.

To use it, one simply powers it on and the display will read out the distance in millimeters. The VL53L0X time-of-flight sensor inside works by sending out a laser pulse and measuring how long it takes for the pulse to bounce back. We hope you’re curious about what such a sensor looks like on the inside, because here’s a nifty teardown of these fantastic devices. The device can technically measure distances of up to 2 m, but [gokux] says accuracy drops off after 1 m.

The main components besides the OLED display and VL53L0X sensor are an ESP32-C3 board (which handily integrates battery charging circuitry), 3D-printed enclosure, tiny rechargeable battery, and power switch. The whole thing is under one cubic inch. Not bad, and it even makes a passable keychain. Parts list, code, and 3D model files, including STEP format, are all available if you’d like to spend an afternoon making your own.

RepTrap Keeps Watch Over Our Cold-Blooded Friends

Wait a second, read that title again. This isn’t a throwback 3D printing project at all. That’s “RepTrap” as in reptile trap, and it’s a pretty clever way to study our cold-blooded friends in their natural habitat.

Now, game cameras — or trail cameras, if you’re less interested in eating what you see — are pretty much reduced to practice. For not that much money you can pick up one of these battery-powered devices, strap it to a tree, and have it automatically snap high-quality pictures of whatever wildlife happens to wander past. But nearly all of the commercially available game cameras have pyroelectric infrared sensors, which trigger on the temperature difference between a warm-blooded animal and the ambient temperature of the background. But what to do when you’re more interested in cold-blooded critters?

Enter [Mirko], who stumbled upon this problem while working with a conservation group in Peru. The group wanted to study snakes, insects, and other ectothermic animals, which are traditionally studied by trapping with pitfalls and other invasive techniques. Unable to rely on PIR, [Mirko] rigged up what amounts to a battery-powered light curtain using a VL53L4CD laser time-of-flight sensor. Mounted above the likely path of an animal, the sensor monitors the height of everything in its field of view. When an animal comes along, cold-blooded or otherwise, RepTrap triggers a remote camera and snaps a picture. Based on the brief video below, it’s pretty sensitive, too.

[Mirko] started out this project using an RP2040 but switched to an ESP32 to take advantage of Bluetooth camera triggering. The need for weatherproofing was also a big driver for the build; [Mirko] is shooting for an IP68 rating, which led to his interesting use of a Hall sensor and external magnet as a power switch.

Continue reading “RepTrap Keeps Watch Over Our Cold-Blooded Friends”

Laser Theremin Turns Your Hand Swooshes Into Music

In a world where smartphones have commoditized precision MEMS Sensors, the stage is set to reimagine clusters of these sensors as something totally different. That’s exactly what [chronopoulos] did, taking four proximity sensors and turning them into a custom gesture input sensor for sound generation. The result is Quadrant, a repurposable human-interface device that proves to be well-posed at detecting hand gestures and turning them into music.

At its core, Quadrant is a human interface device built around an STM32F0 and four VL6180X time-of-flight proximity sensors. The idea is to stream the measured distance data over as fast as possible from the device side and then transform it into musical interactions on the PC side. Computing distance takes some time, though, so [chronopoulos] does a pipelined read of the array to stream the data into the PC over USB at a respectable 30 Hz.

With the data collected on the PC side, there’s a spread of interactions that are possible. Want a laser harp? No problem, as [chronopoulos] shows how you can “pluck” the virtual strings. How about an orientation sensor? Simply spread your hand over the array and change the angle. Finally, four sensors will also let you detect sweeping gestures that pass over the array, like the swoosh of your hand from one side to the other. To get a sense of these interactions, jump to the video demos at the 2:15 mark after the break.

If you’re curious to dig into the project’s inner workings, [chronopoulos] has kindly put the firmware, schematics, and layout files on Github with a generous MIT License. He’s even released a companion paper [PDF] that details the math behind detecting these gestures. And finally, if you just want to cut to the chase and make music of your own, you can actually snag this one on Tindie too.

MEMs sensors are living a great second life outside our phones these days, and this project is another testament to the richness they offer for new project ideas. For more MEMs-sensor-based projects, have a look at this self-balancing robot and magic wand.

Continue reading “Laser Theremin Turns Your Hand Swooshes Into Music”

Smart Lid Spies On Sourdough Starter, Sends Data Wirelessly

[Justin Lam] created a wonderfully-detailed writeup of his Smart Sourdough Lid project, which was created out of a desire to get better data on the progress and health of his sourdough starters, and to do so more efficiently. The result is a tidy, one-piece lid that constantly measures temperature, humidity, and height of the starter in the jar. Data is sent wirelessly for analysis, but there is also a handy OLED display on the top of the lid that shows immediately useful data like how much the starter has peaked, and how much time has passed since it did so.

The PCB was optimized for size, and not designed with mounting in mind, so a hot-glued machine screw serves as a “button extender”. Issues like this can happen when enclosures are designed after the fact; it’s something to which we can all relate.

We really like how focused the design is, and the level of detail [Justin] goes into to explain his design decisions and describe how well they worked out. This isn’t [Justin]’s first kick at the can when it comes to getting data on his sourdough, after all. We remember his earlier work using computer vision to analyze sourdough starters, and he used what he learned to inform this new design; the smart lid is easier to use and handles data much more efficiently.

The project’s GitHub repository has all the information needed to build your own. The lid is ESP8266-based and integrates a VL6180X time-of-flight (ToF) distance sensor, DHT22 to sense temperature and humidity, and a small SSD1306 OLED display for data. A small custom PCB keeps the modules tidy, and a 3D-printed custom enclosure makes it one tidy package.

[Justin] also analyzes the results he obtained and talks about what they mean in the last part of his writeup, so if you’re into baking and interested in his findings, be sure to give that a look.

Lidar House Looks Good, Looks All Around

A lighthouse beams light out to make itself and its shoreline visible. [Daniel’s] lighthouse has the opposite function, using lasers to map out the area around itself. Using an Arduino and a ToF sensor, the concept is relatively simple. However, connecting to something that rotates 360 degrees is always a challenge.

The lighthouse is inexpensive — about $40 — and small. Small enough, in fact, to mount on top of a robot, which would give you great situational awareness on a robot big enough to support it. You can see the device in action in the video below. Continue reading “Lidar House Looks Good, Looks All Around”