Hackaday Prize 2022: Glass Tube Solar Thermionic Converters

Typically, if you want to convert solar energy into electrical energy, you use either photovoltaic (PV) cells, or you use the sunlight to create steam to turn a turbine. Both of these methods are well-established and used regularly in both small- and grid-scale applications. However, [Nick Poole] wanted to investigate an alternative method, using thermionic converters for solar power generation.

[Nick] has been gearing up to produce various styles of vacuum tubes, and noted that the thermionic effect that makes them work could also be used to generate electricity. They are highly inefficient and produce far less power than a photovoltaic solar cell, meaning they’re not in common use. However, as [Nick] notes, unlike PV cells etched in silicon, a thermionic converter can be built with basic glassworking tools, requiring little more than a torch, a vacuum pump, and a spot welder.

Experiments with a large lens to focus sunlight onto a 6V3A diode tube showed promise. [Nick] was able to generate half a volt, albeit at a tiny current, with the design not being optimized for thermionic conversion. Further experiments involved electrically heating a pair of diode tubes, which was able to just barely light an LED at 1.7 V and a current of 7.5 uA. The conversion efficiency was a lowly 0.00012%, around 5 orders of magnitude worse than a typical PV cell.

[Nick]’s hope is that he can produce a tube designed specifically to maximize thermionic conversion for energy generation purposes. It’s likely there is some low-hanging fruit in terms of gains to be made simply by optimizing the design for this purpose, even if the technique can’t compete with other solar generation methods.

In any case, we’re eager to see what [Nick] comes up with! We love to see makers building tubes in their own home workshops.

Continue reading “Hackaday Prize 2022: Glass Tube Solar Thermionic Converters”

Antique Beat Box Showcases 1950’s Engineering Prowess

Before you could just put a drum machine app on your phone, or fire up Garage Band, there were breakthroughs like the Roland 808 drum machine. But that’s not where it all started. In 1959 a company called Wurlitzer (known for things like juke boxes, pianos, and giant pipe organs) produced a new device that had musicians worried it would put drummers out of a job: The 1959 Wurlitzer Sideman. And in the video below the break, we have the joy of watching [LOOK MUM NO COMPUTER] open up, explain, and play one of these marvelous machines.

Can you spot the early circuit sculpture?

It’s noteworthy that in 1959, almost none of the advancements we take for granted had made it out of the laboratory. Transistors? Nope. Integrated Circuits? Definitely not. What does that leave us with? Vacuum tubes (Valves for those across the pond), resistors, capacitors, relays, and… motors? Yep. Motors.

The unit is artfully constructed, and we mean that quite literally- the build was clearly done with care and it is easy to see an early example of circuit sculpture around the 3 minute mark. Electromechanical mechanisms take on tasks that we’d probably use a 555 for these days, but for any of you working on mechanical projects, take note: Wurlitzer really knew what they were doing, and there are some excellent examples of mechanical and electrical engineering throughout this primordial beat box.

If you move to the beat of interesting drum machines, you might enjoy this Teensy based Open Source drum machine that you can build. No tubes required!

Continue reading “Antique Beat Box Showcases 1950’s Engineering Prowess”

Semiconductor Shortage? Never Mind That, There’s A Vacuum Shortage!

As those of us who work in electronics are grappling with a semiconductor shortage making common devices unobtainable and less common ones very expensive, it’s worth noting that there’s another supply crunch playing out elsewhere in the electronics industry. It’s not one that should trouble most readers but it’s a vexing problem in the guitar amp business, as guitar.com reports. At its root is the Chinese Shuguang factory, which it is reported has been forced to close down and move its operations. There’s nothing about this on the Shuguang website, so we hope that the plant has been relocated successfully and production will resume.

The specialist audio market that forms the lion’s share of tube customers in 2021 is a relatively tiny corner of the electronics business, but it’s interesting to note that the three major plants which supply it, in Slovakia, Russia, and China, are still not enough to prevent it being vulnerable when one of them fails. The likelihood of a fourth tube plant emerging somewhere else in the 2020s to take up the slack is not high, but it’s evident that the demand remains healthy enough.

If you’d like to know more about the supply of new vacuum tubes, we went into the subject in greater detail last year.

Retrotechtacular: Nuvistor, Vacuum’s Last Gasp

In 2021 all our electronics are solid state, in that they exclusively use semiconductor devices as their active components. Some of us may experiment with vacuum tubes, but only for curiosity or aesthetic purposes. Semiconductors have overtaken vacuum devices in all but the rarest of niche applications due to their easier design requirements, greater reliability, lower cost, and increased performance.

It was not always this way though, and there was a period at the start of the semiconductor era when transistors and vacuum tubes existed together side-by-side and competed directly. Vacuum tube manufacturers continued to create new devices into the 1970s, and in doing so they pushed the boundaries of their art in unprecedented directions. [David W Knight] has a page dedicated to the Nuvistor, something his calls the “final evolution of the thermionic valve”. His comparison photo seen above shows a Nuvistor on the left — a miniature vacuum tube you’ve likely never seen before.

Continue reading “Retrotechtacular: Nuvistor, Vacuum’s Last Gasp”

Meet The Magic Eye Vacuum Tube

Vacuum tubes ruled electronics for several decades and while you might think of them as simple devices analogous to a transistor or FET, there were many special types. We’re all familiar with nixie tubes that act as numeric displays, and there are other specialty tubes that work as a photomultiplier, to detect radiation, or even generate microwaves. But one of the most peculiar and distinctive specialty tubes has an intriguing name: a magic eye tube. When viewed from the top, you see a visual indication that rotates around a central point, the out ring glowing while the inner is dark, like an iris and pupil.

By [Quark48] – CC BY-SA 2.0

These tubes date back to the RCA 6E5 in 1935. At the time, test equipment that used needles was expensive to make, so there was always a push to replace them with something cheaper.  They were something like a stunted cathode ray tube. In fact, the inventor, Allen DuMont, was well known for innovations in television. An anode held a coating that would glow when hit with electrons — usually green, but sometimes other colors. Later tubes would show a stripe going up and down the tube instead of a circle, but you still call them magic eyes.

The indicator part of this virtual meter took the form of a shadow. Based on the applied signal, the shadow would be larger or smaller. Many tubes also contained a triode which would drive the tube from a signal.

There’s a great web site full of information on these venerable tubes and it has examples of these tubes appearing in plenty of things. They frequently appeared in service equipment, radios, and tape recorders. They even appeared in pro audio equipment like the Binson Echorec echo-delay unit.

Continue reading “Meet The Magic Eye Vacuum Tube”

Just Who Makes Tubes These Days?

For most of us, electronic technology comes in the form of solid state devices. Transistors, integrated circuits, microcontrollers. But for the first sixty years or so of the field existing, these devices either hadn’t been invented yet or were at too early a stage in their development to be either cost-effective, or of much use. Instead a very different type of electronic component ruled the roost, the vaccum tube.

A set of electrodes in an evacuated glass envelope whose electrical properties depended on the modulation of the flow of electrons through them, these were ubiquitous in consumer electronics up until the 1960s, and clung on in a few mass-market applications even as far as the mid 1970s. As cheaper and more versatile semiconductors superseded them they faded from electronic parts catalogues, and the industry that had once produced them in such numbers disappeared in favour of plants producing the new devices. Consumer products no longer contained them, and entire generations of engineers grew up never having worked with them at all. If you were building a tube amplifier in the early 1990s, you were a significant outlier. Continue reading “Just Who Makes Tubes These Days?”

The Art Of Vacuum Tube Fabrication

Vacuum tubes fueled a technological revolution. They made the amplification of signals a reality for transatlantic telephone cables (and transcontinental ones too), they performed logic for early computers, and they delivered that warm fuzzy sound for high fidelity audio. But they were labor intensive to produce, and fragile, so semiconductors came along and replaced tubes in almost every application. But of course tubes are still with us and some tube applications are still critical — you’ll find them used in high-power RF and there are even satellites that depend on klystrons. So there are still experts in tube fabrication around, and Charles Alexanian is one of them. His newly-published talk at the 2018 Hackaday Supercon (found below) is a whirlwind tour of what goes into building a vacuum tube.

The process of building your own vacuum tube isn’t hard, but it’s not a walk in the park. The difficulty comes in the sheer number of processes, and the tricks of the trade found at every step. Charles’ methaphor is that if you build one tube at a time each step is like learning to ride a bicycle again, but if you build many you get into the swing of it and things go a lot better. His talk is a brief overview of everything, but if you want to drill down he also wrote an excellent article that goes further in depth.

In the working components of each tube are the precision parts: the grid (or grids). For the tube to function well these must be accurately produced which can be done with photolithography, but Charles usually uses a winding process involving a lathe. After winding, the grid is stretched to straighten the nickel wire, then cut to length. Other components such as the plate are stamped using an arbor press and simple forms he fabricates for the purpose.

Tube being tested for leaks

Two glass components are used, the dome itself, and feedthrough stems that have a wire for each lead passing through a glass disc. The components are spot welded to the inside portion of the feedthrough stem, then the glass is fused together, again using a lathe. It heads over to a pumping station to evacuate the air from the tube, and is finally tested for leaks using a handheld Tesla coil (see, we knew those weren’t just toys).

Charles proposed his Supercon appearance as a chance to fabricate tubes on-site. We loved the idea, but the amount of gear needed is somewhat prohibitive (annealing ovens, vacuum cabinets, torches for sealing, and the need for 220v, plus space for it all). That’s too bad since we were really hoping to see the Jolly Wrencher in Nixie-tube form — incidentally, Charles says Nixes are simple to make compared to amplifiers and switches. He also mentions that the majority of your time is spent “washing” parts to remove impurities. Fair enough, that part sounds boring, but we hope to endure it at some point in the future because vacuum tube fabrication demos feel very much like a Hackaday event!

Continue reading “The Art Of Vacuum Tube Fabrication”