The Briny Depths Give Wine An Edge, But How?

Though Hackaday scribes have been known to imbibe a few glasses in their time, it’s fair to say that we are not a wine critic site. When a news piece floated by about a company getting into trouble for illegally submerging crates of wine though, our ears pricked up. Why are vintners dumping their products in the sea?

Making wine, or indeed any alcoholic beverage, starts with taking a base liquor, be it grape juice, apple juice, barley malt solution, or whatever, and fermenting it with a yeast culture to produce alcohol. The result is a drink that’s intoxicating but rough, and the magic that turns it into a connoisseur’s tipple happens subsequently as it matures. The environment in which the maturation happens has a huge influence on this, which is one of many reasons why wine from the cellar of a medieval chateau tastes better than that from an industrial unit in southern England. The Californian company was attempting to speed up this process by leaving the bottles beneath the waves. Continue reading “The Briny Depths Give Wine An Edge, But How?”

Ice Wrenchers, Wrencher Chocolates, And The Vaquform DT2

What do you do when you find some friends have bought a vacuum forming machine? Make novelty chocolates and ice cubes, of course! This was my response when I had the opportunity to play with a Vaquform DT2 all-in-one vacuum forming machine, so what follows is partly a short review of an exciting machine, and partly an account of my adventures in edible merchandise creation.

The vaquform machine, on a neutral white background
The Vaquform machine in all its glory.

Vacuum forming, the practice of drawing a sheet of heat-softened plastic film over a model to make a plastic shell copy of it, is nothing new in our community. It’s most often found in hackerspaces in the form of home made vacuum forming tables, and usually requires quite a bit of experimentation to get good results. The Vaquform machine I was lucky enough to be able to try is an all in one machine that puts the whole process into a compact desktop machine of similar size to a typical 3D printer. It’s a machine of two parts with a moveable carriage between them for the plastic sheet; a vacuum table on its base, and a heater unit suspended above it. The unique selling point is that it’s an all-in-one computer controlled unit that does as much as possible for you, it simply requires the user to place a sheet in the carriage and follow the instructions.

When I first saw the machine I didn’t really have anything to try it with, so of course I resorted to producing a Wrencher or two. Because what it makes are essentially moulds, it made sense to produce something Wrencher-shaped with them, and thus the chocolate and ice plan formed. The first mould was made with laser-cut Wrenchers in 2mm acrylic, stacked on two more layers of uncut acrylic to make a bar with an inset Wrencher on top, while the second one used a 3D-printed array of larger stand-alone Wrenchers with channels between them. Would my first attempt at vacuum forming make usable moulds or not? Only one way to find out. Continue reading “Ice Wrenchers, Wrencher Chocolates, And The Vaquform DT2”

Get Your Leafy Meats

Some of us jokingly refer to our hobbies as “mad science,” but [Justin] from The Thought Emporium could be one Igor away from living up to the jibe. The latest project to come out of the YouTube channel, video also after the break, outlines a map for creating an artificial organism in their new lab. The purpose is to test how far a citizen scientist can push the boundary of bioengineering. The stated goal is to create a swimming entity with a skeleton. The Thought Emporium also has a neuron project in the works, hinting at a potential crossover.

The artifishal [sic] organism has themes at the micro and macro scale. [Justin] says, “Cells are like little nano-robots. Mainly in the sense that they just follow their built-in instructions to the best of their ability.” At the multi-cellular level, the goal is to program something to actuate muscle tissue rhythmically to sustain locomotion. The method for creating living parts is decellularization and recellularization, a technique we heard about at Hackaday Belgrade.

The Thought Emporium is improving upon its protocol which removes cells from their “scaffolding” to repopulate it with the desired type, muscle in this case. Cellular scaffolds retain the shape of whatever they were, so whatever grows on them determines what they become. Once the technique of turning a leaf into muscle fibers is mastered, the next step will be creating bones with a different cell line that will mineralize the scaffold. Optimizing the processes and combining the results may show the world what is possible with the dedication of citizen bioengineers.

Regenerative medicine is looking at replacement human-parts with similar techniques. We are eager to see fish that digest plastic.

Continue reading “Get Your Leafy Meats”

Robotic Coffee Comes To Brooklyn, But Will It Stay?

Robots are cool. Everyone knows it, and [Eater NY] highlights a coffee shop with a robotic server opening in Brooklyn. While robots able to prepare and serve drinks or food is not new, it isn’t every day a brick-and-mortar cafĂ© with a robot behind the counter opens up. But expensive automation isn’t the only puzzle piece needed to make a location work.

A robotic coffee shop (like a robotic burger joint) certainly offers novelty, but can it sustain itself beyond that?

As one example, the linked article above points out that the city of New York prohibits entirely cashless businesses. Establishments must accept cash payments, and it’s unclear how the touchscreen-driven system would comply with that requirement.

There are also many tasks involved in running even a modest establishment — loading, cleaning, and maintaining for example — that can’t be realistically taken care of by an immobile robot barista. It’s unclear to what extent the robotic coffee shop will employ human staff, but it’s clear that human involvement is something that isn’t going be eliminated any time soon.

Some of you may remember the robotic burger joint that our own Brian Benchoff managed to check out, and many of his same observations come to mind. The robot burger was perhaps ahead of its time (its single location is listed as closed on Google maps with no recent activity) but maybe the robot coffee place can make it work. Still, expensive automation is only one piece of a system, and the ability to crank out a drink per minute 24/7 might not actually be the missing link.

Radio Waves Bring The Heat With This Microwave-Powered Forge

Depending on the chef’s skill, many exciting things can happen in the kitchen. Few, however, grab as much immediate attention as when a piece of foil or a fork accidentally (?) makes it into the microwave oven. That usually makes for a dramatic light show, accompanied by admonishment about being foolish enough to let metal anywhere near the appliance. So what’s the deal with this metal-melting microwave?

As it turns out, with the proper accessories, a standard microwave makes a dandy forge. Within limits, anyway. According to [Denny], who appears to have spent a lot of time optimizing his process, the key is not so much the microwave itself, but the crucible and its heat-retaining chamber. The latter is made from layers of ceramic insulating blanket material, of the type used to line kilns and furnaces. Wrapped around a 3D printed form and held together with many layers of Kapton tape, the ceramic is carefully shaped and given a surface finish of kiln wash.

While the ceramic chamber’s job is to hold in heat, the crucible is really the business end of the forge. Made of silicon carbide, the crucible absorbs the microwave energy and transduces it into radiant heat — and a lot of it. [Denny] shares several methods of mixing silicon carbide grit with sodium silicate solution, also known as water glass, as well as a couple of ways of forming the crucible, including some clever printed molds.

As for results, [Denny] has tried melting all the usual home forge metals, like aluminum and copper. He has also done brass, stainless steel, and even cast iron, albeit in small quantities. His setup is somewhat complicated — certainly more complex than the usual propane-powered forge we’ve seen plenty of examples of — but it may be more suitable for people with limited access to a space suitable for lighting up a more traditional forge. We’re not sure we’d do it in the kitchen, but it’s still a nice skill to keep in mind.

Continue reading “Radio Waves Bring The Heat With This Microwave-Powered Forge”

a microwave-oven with animated wave diagram

Dive Into The Microwaves, The Water’s Dipolar

When the microwave oven started to gain popularity in the 60s and 70s, supporters and critics alike predicted that it would usher in the end of cooking as we knew it. Obviously that never quite happened, but not because the technology didn’t work as intended. Even today, this versatile kitchen appliance seems to employ some magic to caffeinate or feed a growing hacker in no time flat. So, how exactly does this modern marvel work?

interior of a microwave-oven with a wave length overlay

That’s exactly what [Electronoob] set out to explain in his latest video. After previously taking apart a microwave and showing off the magnetron within he’s back with a clear explanation of how these devices work.

Maybe you have no idea, or have heard something vague about the water in the food wiggling in response to the microwaves. Do you know why microwaves and not some other part of the electromagnetic spectrum? Why the food spins on a platter? How the size of the oven relative to the wavelength affects the efficiency of its cooking? We didn’t, and think the video is a great primer on all of this and more.

Here at Hackaday, we sure love using and abusing microwave ovens. From upgrading them with voice control back in 2013, to turning them into UV curing chambers and mini foundries, to the limitless possibilities for the transformers and magnetrons that await us inside, we just can’t get enough. (this is our 82nd article tagged with microwave!)

Continue reading “Dive Into The Microwaves, The Water’s Dipolar”

A 3D-printed teapot with an e-ink display

Top Up Your Teapot In Time With This E-ink Tea Timer

Whether you’re a tea aficionado or just a casual drinker, it’s important to pay attention to your brewing times: too short and you’re just drinking hot water, too long and your brew becomes bitter and astringent. [Bob] wanted to help his parents avoid the latter scenario, and made them a convenient little tea timer that displays the time when they last replenished the pot.

Operating the timer couldn’t be easier: just press down on the teapot’s lid and it will store the current time on its e-ink display. Inside is a Pimoroni Badger 2040 with a real-time clock daughter board, powered by a set of AAA batteries. The Badger is an RP2040-powered board with an integrated e-ink display that’s perfect for this use case: the display needs to be updated only once when the button is pressed, and doesn’t use any power after that.

Naturally, the tea timer is encased in a teapot-shaped enclosure. It has a clever mechanism inside that pushes one of the Badger’s buttons when you press down on the lid, and also provides the satisfying click that you hear in the video embedded below. It took more than thirteen hours to print on [Bob]’s Creality Ender 3, but the end result definitely looks the part.

Functionally, this tea timer is about as simple as it gets: most other designs focus on the initial brewing process, and include features to alert you when your tea is ready.

Continue reading “Top Up Your Teapot In Time With This E-ink Tea Timer”