Bit-banging Ethernet On An ATTiny85

Ethernet bit banging

[Cnlohr] just published an ingenious but dangerous way to send Ethernet packets using an ATTiny85. The ATtiny directly drives one pair of differential TX wires of a standard Ethernet cable. Doing so will force the TX signal ground to be the same as the ATTiny’s and in some cases may put 48V on your AVR if your cable is plugged into a Power Over Ethernet switch… which may be a problem.

In the video embedded below [cnlhor] explains that the microcontroller is clocked at 20Mhz to bit-bang the Manchester encoded electrical signals. Using a neat trick his home switch will detect his platform as a 10MBit Ethernet switch which can then send hard-coded packets to his computer. As you can guess, each of this packets takes quite a bit of space inside the ATTiny’s flash memory: 2+Kbytes. All of the code used may be downloaded on the creator’s GitHub repository, though he constantly warned us that it shouldn’t be used for real life applications.

Edit: One of our readers also let us know of a similar awesome project called the IgorPlug-UDP. Make sure to check it out!

[Read more...]

DEFCON: Blackphone

Despite being full of techies and people doing interesting things with portable devices, you don’t want to have an active radio on you within a quarter-mile of DEFCON. The apps on your phone leak personal data onto the Internet all the time, and the folks at DEFCON’s Wall Of Sheep were very successful in getting a few thousand usernames and passwords for email accounts.

Blackphone is designed to be the solution to this problem, so when we ran into a few members of the Blackphone crew at DEFCON, we were pretty interested to take a quick peek at their device.

The core functionality for the Blackphone comes from its operating system called PrivatOS. It’s a fork of Android 4.4.2 that is supposed to seal up the backdoors found in other mobile phones. There’s also a bundle of apps from Silent Circle that give the Blackphone the ability to make encrypted phone calls, texts (with file sharing), and encrypted and password protected contact lists.

The hardware for the Blackphone is pretty impressive; a quad-core Nvidia Tegra provides all the power you need for your apps, video, and playing 2048, a 2000mAh battery should provide enough juice to get you through a day or two (especially since you can turn off cores), and the usual front/rear cameras, GPS, 802.11bgn and GSM and HSPA+/WCDA radios means this phone will be useable on most networks.

New Chip Alert: The ESP8266 WiFi Module (It’s $5)


Every so often we run across something in the Hackaday tip line that sends us scurrying to Google, trying to source a component, part, or assembly. The ESP8266 WiFi module is the latest, made interesting because it pretty much doesn’t exist outside China.

Why is it cool? It’s a WiFi module with an SOC, making it somewhat similar to TI’s CC300 in conception (A.K.A. the thing that makes the Spark Core so appealing), in that a microcontroller on the module takes care of all the WiFi, TCP/IP stack, and the overhead found in an 802.11 network. It’s addressable over SPI and UART, making this an exceptionally easy choice for anyone wanting to build an Internet of Things thing; you can simply connect any microcontroller to this module and start pushing data up to the Internet. Oh, it’s also being sold for $5 in quantity one. Yes, for five dollars you can blink a LED from the Internet. That’s about half the price as the CC3000 itself, and a quarter of the price if you were to build a CC3000 breakout board.

There’s a catch, right, there’s always a catch. Yep. About two hours after this post is published it will be the number one English language Google result for “ESP8266.” As far as the English-speaking world is concerned, there is absolutely nothing to be found anywhere on the Internet on this module.

Seeed Studio recently sold a few of these modules for $7 and has some documentation, including a full datasheet and an AT command set. All the documentation is in Chinese. There’s also an “ESP8266 IoT SDK”, but from a quick glance at the code, this appears to be an SDK for the SOC on the module, not a simple way to connect the module to a microcontroller.

Anyone wanting to grab one of these modules can do so on Ali Express. Anyone wanting to do something with one of these modules will have a much more difficult time, most likely poking and prodding bits randomly with the help of Google translate. Should someone, or even a group of people, want to take up the task of creating a translation of the datasheet and possibly a library, we have a pretty collaborative project hosting site where you can do that. You may organize in the comments below; we’ll also be taking bets as to when a product using the ESP8266 will be found on Kickstarter. My guess is under a month.

EDIT: Here’s a translation of the datasheet and AT command set.

Edit two: [bafeigum] is writing a library go help him out.

Thanks [Liam] for the tip.

ARM-BMW, The Open Hardware Cortex-M0 Development Board

[Vsergeev] tipped us about a neat Cortex-M0 based development board with a total BoM cost under $15. It’s called the ARM Bare Metal Widget (ARM-BMW), focuses on battery power, non-volatile storage and debuggability.

The chosen micro-controller is the 50MHz NXP LPC1114DH28 which provides the user with 32kB of Flash, 8kB of SRAM, a 6 channel ADC and I2C/SPI/UART interfaces among others. The ARM-BMW contains a 2Mbyte SPI flash, an I2C I/O expander, several headers for expansion/debug purposes, 4 LEDs, 2 buttons, 2 DIP switches and finally a JTAG/SWD header for flashing and debugging. As you can see in the picture above you may either populate your own HC49UP crystal or use the internal 12MHz RC oscillator.

The platform can be powered using either a USB cable or a LiPo battery. As you can guess it also includes a much-needed battery charger (the MCP73831T) and a switched capacitor DC/DC converter to supply 3.3V. You may find all the files on the hardware or software repositories.

Defcon Side Trip: Pololu And Robots

PololuDuring our trip out to Vegas for Defcon, we were lucky enough to catch up with a few of the companies that should be of interest to Hackaday readers. One of the companies based out of the area is Pololu, makers and purveyors of fine electronics and robots. In an incredible bit of lucky scheduling, LV Bots, the Las Vegas area robot builders club, was having an event the same weekend we were there. A maze challenge, no less, where builders would compete to build the best robot and write the best code to get a pile of motors and electronics through a line-following maze in the fastest amount of time.

The Bots

The LV Bots events are held in the same building as Pololu, and unsurprisingly there were quite a few Pololu employees making a go at taking the stuff they developed and getting it to run through a maze. At least one bot was based on the Zumo kit, and a few based on the 3pi platform. Interestingly, the Raspberry Pi Model B+ was the brains of quite a few robots; not extremely surprising, but evidence that the LV Bots people take their line-following mazes seriously and are constantly improving their builds.

Each robot and builder ‘team’ was given three runs. For each team, the first run is basically dedicated to mapping the entire maze. A carefully programmed algorithm tries to send the robot around the entire maze, storing all the intersections in memory. For the second and third runs, the bot should – ideally – make it to the end in a very short amount of time. This is the ideal situation and was only representative of one team for that weekend’s event.

[Read more...]

SMT and Thru-Hole Desoldering

My introduction to electronic manufacturing was as a production technician at Pennsylvania Scale Company in Leola PA in the early 1980’s. I learned that to work on what I wanted to work on I had to get my assigned duties done by noon or thereabouts. The most important lesson I had learned as a TV repairman, other than not to chew on the high voltage cable, was to use your eyes first. I would take a box of bad PCB’s that were essentially 6502 based computers that could count and weigh, and first go through inspecting them; usually the contents were reduced 50% right off by doing this. Then it was a race to identify and fix the remaining units and to keep my pace up I had to do my own desoldering.

Desoldering with IR System

Desoldering with IR System

It worked like this; you could set units aside with instructions and the production people would at some point go through changing components etc. for you or you could desolder yourself. I was pretty good at hand de-soldering 28 and 40 pin chips using a venerable Soldapulit manual solder sucker (as they were known). But to really cook I would wait for a moment when the production de-soldering machine was available. There was one simple rule for using the desoldering station: clean it when done! Failure to do so would result in your access to the station being suspended and then you might also incur the “wrath of production” which was not limited to your lunch bag being found frozen solid or your chair soaked in defluxing chemicals.

[Read more...]

The ChipWhisperer At Defcon

We’ve seen [Colin]‘s entry to The Hackaday Prize before. After seeing his lightning talk at Defcon, we had to get an interview with him going over the intricacies of this very impressive piece of hardware.

The ChipWhisperer is a security and research platform for embedded devices that exploits the fact that all security measures must run on real hardware. If you glitch a clock when a microcontroller is processing an instruction, there’s a good probability something will go wrong. If you’re very good at what you do, you can simply route around the code that makes up the important bits of a security system. Power analysis is another trick up the ChipWhisperer’s sleeve, analyzing the power consumption of a microcontroller when it’s running a bit of code to glean a little information on the keys required to access the system. It’s black magic and dark arts, but it does work, and it’s a real threat to embedded security that hasn’t had an open source toolset before now.

Before our interview, [Colin] did a few short and sweet demos of the ChipWhisperer. They were extraordinarily simple demos; glitching the clock when a microcontroller was iterating through nested loops resulted in what can only be described as ‘counter weirdness’. More advanced applications of the ChipWhisperer can supposedly break perfectly implemented security, something we’re sure [Colin] is saving for a followup video.

You can check out [Colin]‘s 2-minute video for his Hackaday Prize entry below.

[Read more...]


Get every new post delivered to your Inbox.

Join 92,276 other followers