The Nintendo PlayStation: Finally Working

The Nintendo PlayStation is not a misnomer. Before the PS1, Sony teamed up with Nintendo to produce a video game console that used CD-ROMs as a distribution platform. These plans fell through, Sony went on to design the PS1, Nintendo the N64, but a few prototype ‘Nintendo PlayStations’ made it out into the wild. One of these unbelievably rare consoles was shipped to a company that eventually went into bankruptcy. The console was found when the contents of an office building were put up for auction, and last year, [Ben Heck] tore it apart.

It’s taken a year, but now this Nintendo PlayStation is finally working. This console now plays audio CDs and games written by homebrewers. The hardware lives, and a console once forgotten lives once more.

The last time [Ben Heck] took a look at the Nintendo PlayStation, the CD-ROM portion of the console was non-functional. The Super Nintendo was still functional, but for this prototype, the CD-ROM was completely self-contained and required a ‘boot cartridge’ of sorts to access anything on a CD. Somehow or another — [Ben] thinks it was a wonky cable or a dead cap — The CD-ROM came to life. Yes, jiggling a cable was the extent of the repair, after spending an inordinate amount of time reverse engineering the console.

With the CD-ROM working, [Ben] got audio playing and tried out of the few homebrew games for this PlayStation prototype. Super Boss Gaiden didn’t quite work because this game was designed to load in chunks. Another game written for this console, Magic Floor, was small enough to fit in the entirety of the CD-ROM’s buffer and loaded correctly. That doesn’t mean the game worked; there are some slight differences between the Nintendo PlayStation emulator and the actual hardware that now exists. [Ben] emailed the author of Magic Floor, and now, after a quarter-century, the Nintendo PlayStation works.

What’s next for the Nintendo PlayStation? Well, now the emulator for this system can correctly reflect the actual hardware, and hopefully the homebrewers can figure out how to write a game for this system.

Continue reading “The Nintendo PlayStation: Finally Working”

Reverse Engineering the Sony PocketStation

[Robson Couto] never actually owned a PlayStation in his youth, but that doesn’t mean he can’t have a later in life renaissance. In particular a Japan only accessory called the PocketStation caught his interest.

The item in question resided in the PlayStation’s memory card slot. It’s purpose was to add additional functionality to games and hopefully sell itself. Like the PokeWalker, Kinect, etc. It’s an age old tactic but the PocketStation had some interesting stuff going on (translated).

The biggest was its processor. Despite having a pathetic 32×32 mono screen, it hosted the same processor as the GameBoy Advance. Having acquired a card from an internet auction house [Robson] wanted to load up some of the ROMs for this device and see what it was like.

It took quite a bit of work. Luckily there is a ton of documentation floating around the internet thanks to the emulation scene and it wasn’t long before he convinced a microcontroller to pretend to be the memory card slot. Now anyone with some skill and a small piece of gaming history can play around with the rare ROM dump for the PocketStation.

Tearing Apart The Nintendo PlayStation

The mid 90s were a weird time for video game hardware. There were devices that could play videos from compact disks. Those never caught on. Virtual reality was the next big thing. That never caught on. The Sony PlayStation was originally an add-on for the Super Nintendo. That never caught on, but a few prototype units were produced. One of these prototype ‘Nintendo Playstations’ was shipped to a company that went into bankruptcy. Eventually, the assets of this company were put up for auction, and this unbelievably rare game console was bought by [Terry Diebold] for $75.

[Terry] allowed [Ben Heck] tear into this piece of videogame history, and he has the video proof that this was a collaboration between Sony and Nintendo.

Continue reading “Tearing Apart The Nintendo PlayStation”

Cheating at Video Games: Arduino Edition

[Javier] has put in his time playing Final Fantasy X. In the game, there’s a challenge where you have to dodge 200 consecutive lightning strikes by pressing a button at just the right time. [Javier] did this once, but when he bought a new PS Vita handheld, he wanted the reward but couldn’t bear the drudgery of pressing X when the screen lights up 200 times.

4987021466110559532

So he did what anyone would do: hooked up a light-dependent resistor to an Arduino and rubber-banded a servo to press the X button for him. It’s a simple circuit and a beautiful quick hack, all the more so because it probably only took him a half hour or so to whip up. And that’s a half hour better spent than dodging lightning strikes. According to his screen-shot, he didn’t stop at 200 dodges, though. He racked up 1,568 dodges, with a longest streak of 1,066. You can watch a video on his blog and pull the code out of his GitHub.

Why do this? Because that’s what simple computers are for. We hate these silly jumping mini-games with a passion, so we applaud anyone who cheats their way around them. And while not as hilarious as this machine that cheats at Piano Tiles, [Javier]’s hack gets the job done. What other epic video game cheats are we missing?

Gaming Chair gives Full Body Feeling to Collisions

A PS-3 controller has an unbalanced motor inside that vibrates your hand whenever you crash a car into a wall or drive it off a cliff and hit the rocks below but [Rulof Maker] wanted that same feeling all over his body. So he added a serious unbalanced motor to his favorite gaming chair to make his whole body vibrate instead.

To do that he opened up the controller and found the wires going to the unbalanced motor. There he added a small relay, to be activated whenever the motor was energized. Wires from that relay go to a female connector mounted in the side of the controller, keeping the controller small and lightweight.

Next he needed to attach a much bigger unbalanced motor to the underside of his favorite gaming chair. For the unbalanced mass he poured concrete powder and molten lead into a tin can mold and attached the result to the motor’s shaft. Using a piece of wood he attached the motor to the chair’s underside.

All that was left was to power the motor and turn it on when needed. For that he wired up a bigger relay, with the relay’s coil wired to a male connector to plug into the PS-3 controller. Now when the PS-3 wants to vibrate, that relay is energized. All that was left was to wire the relay’s normally open switch, the motor and a power cord in series, plug it into the wall socket, and he was ready to shake.

Continue reading “Gaming Chair gives Full Body Feeling to Collisions”

32C3: Running Linux On The PS4

At the 2010 Chaos Communication Congress, fail0verflow (that’s a zero, not the letter O) demonstrated their jailbreak of the PS3. At the 2013 CCC, fail0verflow demonstrated console hacking on the Wii U. In the last two years, this has led to an active homebrew scene on the Wii U, and the world is a better place. A few weeks ago, fail0verflow teased something concerning the Playstation 4. While this year’s announcement is just a demonstration of running Linux on the PS4, fail0verflow can again claim their title as the best console hackers on the planet.

Despite being able to run Linux, there are still a few things the PS4 can’t do yet. The current hack does not have 3D acceleration enabled; you won’t be playing video games under Linux with a PS4 any time soon. USB doesn’t work yet, and that means the HDD on the PS4 doesn’t work either. That said, everything to turn the PS4 into a basic computer running Linux – serial port, framebuffer, HDMI encoder, Ethernet, WiFi, Bluetooth, and the PS4 blinkenlights – is working.

Although the five-minute lightning talk didn’t go into much detail, there is enough information on their slides to show what a monumental task this was. fail0verflow changed 7443 lines in the kernel, and discovered the engineers responsible for the southbridge in the PS4 were ‘smoking some real good stuff’.

This is only fail0verflow’s announcement that Linux on the PS4 works, and the patches and bootstrap code are ‘coming soon’. Once this information is released, you’ll need to ‘Bring Your Own Exploit™’ to actually install Linux.

Video of the demo below.

Continue reading “32C3: Running Linux On The PS4”

USB Proxy Rats Out Your Devices’ Secrets

If you need to reverse-engineer a USB protocol on a computer running Linux, your work is easy because you control everything on the target system — you can just look at the raw USB data. If you’d like to reverse-engineer a USB device that plugs into a game console, on the other hand, your work is a lot harder. Until now.

serialusb is a side-project by [Mathieu Laurendeau], alias [Matlo]. His main project, GIMX is aimed at gaming and lets you modify your gaming controller’s performance by passing it first through your PC and tweaking the USB data before forwarding it on to the target console. Want rapid fire? You got it. Alter the steering-wheel sensitivity curves? Sure.

GIMX is essentially a USB man-in-the-middle between your controller and your console, with the added ability to modify the data along the way. For hardware that’s not yet supported by GIMX, though, either [Matlo] would need to borrow your controller, or teach you to man-in-the-middle your own USB traffic. And that’s what serialusb does.

The hardware required is very modest: a USB-to-serial adapter and an ATmega32u4-based Arduino clone. Many of you could whip this together with parts on hand, and it’s the same hardware you’d need to run GIMX anyway. Data goes through your computer, is usbmon’ed and wireshark’ed, and then passed over serial to the ATmega which then converts it back into USB, plugged into the console. A very tidy little setup.

In case this seems familiar, we’ve covered a similar trick by [Matlo] before that used a BeagleBoard as the computer in the middle. That’s a sweet setup for sure, but if you don’t have a spare single-board computer lying around, now you can get it done for only around $5 in parts. Happy USB reversing!