TiLDA MKe: the EMF 2014 Badge

The TiLDA badge from EMF 2014

 

Hardware conference badges keep getting more complex, adding features that are sometimes useful, and sometimes just cool. The Electromagnetic Field (EMF) 2014 badge, TiLDA MKe, is no exception.

This badge displays the conference schedule, which can be updated over an RF link with base stations. It even notifies you when an event you’re interested in is about to start. Since we’ve missed many a talk by losing track of the time, this seems like a very useful feature.

Beyond the schedule, the device has a dedicated torch button to turn it into a flashlight. A rather helpful feature seeing as EMF takes place outdoors, in a field of the non-electromagnetic sort. They’re also working on porting some classic games to the system.

The badge is compatible with the Arduino Due, and is powered by an ARM Cortex M3. It’s rechargeable over USB, which is a nice change from AA powered badges. It also touts a radio transceiver, joystick, accelerometer, gyroscope, speaker, infrared, and is compatible with Arduino shields.

For more technical details, you can check out the EMF wiki. EMF 2014 takes place from August 29th to the 31st in Bletchley, UK, and you can still purchase tickets to score one of these badges.

A Raspberry Pi Helmet Cam with GPS Logging

20140126_222809-1 Over the last 20 years, [Martin] has been recording snowboarding runs with a standard helmet cam. It was good but he felt like he could improve upon the design by building his own version and logging additional data values like speed, temperature, altitude, and GPS. In the video shown after the break, a first person perspective is displayed with a GPS overlay documenting the paths that were taken through the snow. [Martin] accomplished this by using a python module called picamera to start the video capture and writing the location to a data file. He then modified the program to read the current frame number and sync GPS points to an exact position in the video. MEncoder is used to join the images together into one media file.

The original design was based on the Raspberry Pi GPS Car Dash Cam [Martin] developed a few months earlier. The code in this helmet cam utilizes many of the same functions surrounding the gathering of GPS data points, recording video, and generating the overlay. What made this project different though were the challenges involved. For example, a camera inside a car rarely has to deal with extreme drops in temperature or the wet weather conditions of a snowy mountain. The outside of the vehicle may get battered from the snow, but the camera remains relatively safe from exposure. In order to test the Raspberry Pi before venturing into the cold, [Martin] stuck the computer in the freezer to see what would happen. Luckily it worked perfectly.

Click past the break for the rest of the story.

[Read more...]

Reverse Engineering a GPS Watch to Upload Custom Firmware

 

Sometimes GPS watches are too good to be left with their stock firmware. [Renaud] opened his Kalenji 300 GPS watch, reverse engineered it in order to upload his own custom firmware.

The first step was to sniff the serial traffic between the PC and the microcontroller when upgrading firmware to understand the protocol and commands used. [Renaud] then opened the watch, figured out what the different test points and components were. He used his buspirate with OpenOCD to extract the existing STM32F103 firmware. The firmware helped him find the proper value to store in a dedicated register for the boot loader to start.

By looking at the disassembly code he also found the SPI LCD initialization sequence and discovered that it uses a controller similar to the ST7571. He finally compiled his own program which uses the u8glib graphics library. Follow us after the break for the demonstration video.

[Read more...]

A Better Google Glass For $60 (This One Folds)

glassFor [Tony]‘s entry for The Hackaday Prize, he’s doing something we’ve all seen before – a head mounted display, connected to a Bluetooth module, displaying information from a smartphone. What we haven’t seen before is a cheap version of this tech, and a version of Google Glass that folds – you know, like every other pair of glasses on the planet – edges this project over from ‘interesting’ to ‘nearly practical’.

For the display, [Tony] is using a 0.96″ OLED connected to an Arduino Nano. This screen is directed into the wearer’s eye with a series of optics that, along with every other part of the frame, was 3D printed on a Solidoodle 2. The frame itself not only folds along the temples, but also along the bridge, making this HMD surprisingly compact when folded up.

Everything displayed on this head mounted display is controlled by  either an Android phone or a Bluetooth connection to a desktop. Using relatively simple display means [Tony] is limited to text and extremely simple graphics, but this is more than enough for some very interesting applications; reading SMS messages and checking email is easy, and doesn’t overpower the ‘duino.


SpaceWrencherThe project featured in this post is an entry in The Hackaday Prize. Build something awesome and win a trip to space or hundreds of other prizes.

Hats with Sunblock Reminders are Easy to Make

light_sunscreen-reminder-hat-00

Just about anyone can build this UV index sensing wearable that detects heat rays from the sun and reminds the user to put on sunscreen. There is no soldering required, which makes this a nice beginners projects for those unfamiliar with hooking up electronic sensors.

All that is needed is a FLORA main board, one UV index sensor, a piezo Buzzer, a 500mAh lipoly battery, 2-ply conductive thread, a couple of household tools, and your favorite summer’s hat.

Once the materials have been rounded up, the rest of the process is relatively simple. Threading the FLORA in and place and connecting the Piezo only takes a few minutes. Then the UV sensor is added allowing the hat to start collecting data. A little bit of coding later, and the whole system is ready to be worn out in the sun.

light_sunscreen-reminder-hat-08

What’s great about this project is that the hat can be programmed to play a song when it is time to apply more sunscreen. Everyone from beach bums, to sun-bathing beauties, to music festival attendees will be able to find this hat useful. And, it is cheap and easy to make.

The video on the Adafruit tutorial page shows how simple it is to rig up the system.

[Read more...]

Hacked e-cigarette vaporizer can send smells…in space!

IMG_20140717_143831_173

This 3D printed scent distributor was put together by eight people from three states during the 2014 NYC NASA Space Apps Challenge. The team went on to take 1st place in the competition.

The project is called Senti8 and uses a FLORA Arduino micro-controller and a Neopixel LED strip purchased from Adafruit. A smartphone mobile app then remotely connects to the device allowing the user to choose which scent they would like to send to their friend, who is also wearing one of the wristbands.

They came up with the idea by simply asking an American astronaut named [Doug Wheelock] what he missed the most while travelling through the boundless reaches of outer space. To their surprise, he said that the thing he missed the most was his sense of smell.

Originally, the project was envisioned to be a wearable technology for space tourism. But over time, the project morphed into a wristband that would allow people to remember places or planets visited. Even memories unique to those places through scent could be experimented with.

One of the team members, [Brooks], was spotted wearing the Senti8 at the Wearable Tech LA conference in Pasadena, CA on July 17, 2014. The LED lights lining the outside could be seen all the way across the large auditorium as she chatted up with local Crashspace members as they prepared to present their design-oriented hacks to the public.

She gave an interview demoing the wristband which can be seen in the video posted below:

[Read more...]

Smart Hat Puts Your Head in the Game

man wearing a diy head mounted display

 

[Arvind] has dropped his hat in the game of head mounted displays. With Google Glass pushing $1,500, it’s only natural for hackers to make a cheaper alternative. [Avind's] $80 version might not be pretty, but it gets the job done.

Using a Raspberry Pi loaded with speech recognition software, a webcam, 2.5 inch LCD display and a handful of other parts, [Arvind's] hat mounted display allows him to view email, Google Maps, videos or just about anything he wants.

An aspheric loupe magnifier lens lets him see the display even though it sits around 5cm from his eye. No outside light is allowed in. Only the guts of the webcam were used to give him the video and microphone. We’ve seen other head mounted displays before, and this one adds to the growing collection. Be sure to check out [Arvinds] site for a tutorial on how to build your own, and catch a video of it in action after the break.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 96,660 other followers