Inductive Charger Mod Allows for Non-Stop Wireless Rocking

Inductive charger

When you want to jam out to the tunes stored on your mobile devices, Bluetooth speakers are a good option. Battery power means you can take them on the go and the Bluetooth connection means you don’t have to worry about cables or wires dangling around. Unfortunately the batteries never seem to last as long as we want them too. You can always plug the speaker back in to charge up the battery… but when you unhook those cords they always seem to end up falling back behind the furniture.

[Pierre] found himself with this problem, but being a hacker at heart meant that he was able to do something about it. He modified his JAM Classic Bluetooth Wireless Speaker to include an inductive charger. It used to be a lot of work to fabricate your own inductive charging system, or to rip it out of another device. But these days you can purchase kits outright.

The JAM speaker was simply put together with screws, so no cracking of the plastic was necessary. Once the case was removed, [Pierre] used a volt meter to locate the 5V input line. It looks like he just tapped into the USB port’s power and ground connections. The coil’s circuit is soldered in place with just the two wires.

All [Pierre] had left to do was to put the speaker back together, taking care to find space for the coil and the new circuit board. The coil was taped to the round base of the speaker. This meant that [Pierre] could simply tape the charging coil to the underside of a glass table top. Now whenever his Bluetooth speaker gets low on battery, he can simply place it on the corner of the table and it will charge itself. No need to mess with cables.

 

 

Hackaday Links: August 30, 2014

hackaday-links-chain

Adafruit did another Circuit Playground, this time concerning frequency. If you’re reading this, no, it’s probably not for you, which is great because it’s not meant to be. If you have some kids, though, it’s great. Not-muppet robots and oscilloscopes. Just great.

The Hack42 space in Arnhem, Neterhlands recently got an offer: clean out a basement filled with old computer equipment, and it’s yours. Everything in the haul had to fit through an 80cm square door, and there are some very heavy, very rare pieces of equipment here. It’ll be a great (and massive) addition to their museum. There’s a few pics from the cleanout here and here.

[Mike] has been working on a project to convert gerber files into SVGs and it’s great.

[Carl] did a roundup of all the currently available software defined radios available. It’s more than just the RTL-SDR, HackRF, and BladeRF, and there’s also a list of modifications and ones targeted explicitly to the ham crowd.

This is a Facebook video, but it is pretty cool. It’s a DIY well pump made in Mexico. A few rubber disks made out of an old inner tube, a bit of PVC pipe, and a string is all you need to bring water to ground level.

What can you do with a cellphone equipped with a thermal imaging camera? Steal PIN codes, of course. Cue the rest of the blogosphere sensationalizing this to kingdom come. Oh, what’s that? Only Gizmodo took the bait?

About a year ago, we saw a pretty cool board made by [Derek] to listen in on the CAN bus in his Mazda 3. Now it’s a Kickstarter, and a pretty good one at that.

Your connectors will never be this cool. This is a teardown of a mind bogglingly expensive cable assembly, and this thing is amazing. Modular connectors, machined copper shields, machined plastic stress relief, and entire PCBs dedicated to two caps. Does anyone know what this mated to and what the list price was?

 

WiFi Raspberry Pi Touchscreen Camera

raspberry_pi_open-case-parts

Adafruit has a tutorial on their site that shows how to fashion together a cloud-connected, point-and-shoot camera. The best part of this project is that it can be customized to the heart’s content, unlike traditional digital cameras or smartphones. The integrated touchscreen and open-source computing allows for Instagram-like filters that can be scrolled through easily. No case is needed, but a 3D printed one can be attached for a more polished outcome.

The backup system of this Raspberry Pi-enabled device connects wirelessly to the internet and uploads the photos through the use of a Dropbox API. This functionality is great for syncing the camera to a cloud based server which then can be turned into a makeshift picture database for a website. The camera might be good for recording timelapse photography as well where a program could automatically create GIFs from the backup photos. It doesn’t seem like it would be hard to make either, especially because Adafruit pretty much always provides great documentation. Their videos are usually good too. The one posted below is relatively short, but provides enough information to see how it works.

[Read more...]

3D Printed Virtual Reality Goggles

gaming-loop

Oculus, as we know, was acquired by Facebook for $2 billion, and now the VR community has been buzzing about trying to figure out what to do with all this newly accessible technology. And adding to the interest, the 2nd iteration of the development kits were released, causing a resurgence in virtual reality development as computer generated experiences started pouring out from of every corner of the world. But not everyone can afford the $350 USD price tag to purchase one of these devices, bringing out the need for Do-It-Yourself projects like these 3D printed wearable video goggles via Adafruit.

The design of this project is reminiscent of the VR2GO mobile viewer that came out of the MxR Lab (aka the research environment that spun out Palmer Lucky before he created Oculus). However, the hardware here is more robust and utilizes a 5.6″ display and 50mm aspheric lenses instead of a regular smart phone. The HD monitor is held within a 3D printed enclosure along with an Arduino Micro and 9-DOF motion sensor. The outer hood of the case is composed of a combination of PLA and Ninjaflex printing-filament, keeping the fame rigid while the area around the eyes remain flexible and comfortable. The faceplate is secured with a mounting bracket and a pair of aspheric lenses inside split the screen for stereoscopic video. Head straps were added allowing for the device to fit snugly on one’s face.

At the end of the tutorial, the instructions state that once everything is assembled, all that is required afterwards is to plug in a 9V power adapter and an HDMI cable sourcing video from somewhere else. This should get the console up and running; but it would be interesting to see if this design in the future can eliminate the wires and make this into a portable unit. Regardless of which, this project does a fantastic job at showing what it takes to create a homemade virtual reality device. And as you can see from the product list after the break, the price of the project fits under the $350 DK2 amount, helping to save some money while still providing a fun and educational experience.

[Read more...]

Judge Spotlight: Limor “Ladyada” Fried

judge-spotlight-ladyada

We sent off a list of questions, just like every week, and [Ladyada] offered to do a video response. How awesome is that? Not only did she answer our questions, but she talked at length for several of them. We’re biased, but her explanation about Adafruit’s manufacturing processes and options for home hackers to get boards spun was a real treat.

Perhaps we should step back for a minute though. In case you don’t know [Limor Fried], aka [Ladyada], is a judge for The Hackaday Prize which will award a trip into space and hundreds of other prizes for hackers who build connected devices that use Open Design (Open Hardware and Open Source Software). She’s the founder of Adafruit Industries, an MIT double-grad, and all around an awesome engineer!

Check out the video after the break. We’ve included a list of the questions and the timestamps at which they are answered.

[Read more...]

Handheld Game System Powered by Arduino

DIY Handheld Game System

These days, it’s easy enough to play games on the go. If you have a smart phone, you are pretty much set. That doesn’t mean you can’t still have fun designing and building your own portable gaming system, though.

[randrews] did just that. He started out by purchasing a small memory LCD display from Adafruit. The screen he chose is low power as far as screens go, so it would be a good fit for this project. After testing the screen with a quick demo program, it was time to start designing the circuit board.

[randrews] used Eagle to design the circuit. He hand routed all of the traces to avoid any weird issues that the auto router can sometimes cause. He made an efficient use of the space on the board by mounting the screen over top of the ATMega chip and the other supporting components. The screen is designed to plug in and out of the socket, this way it can be removed to get to the chip. [randrews] needs to be able to reach the chip in order to reprogram it for different games.

Once the board design was finished, [randrews] used his Shapeoko CNC mill to cut it out of a copper clad board. He warns that you need to be careful doing this, since breathing fiberglass dust is detrimental to living a long and healthy life. Once the board was milled out, [randrews] used a small Dremel drill press to drill all of the holes.

The final piece of the puzzle was to figure out the power situation. [randrews] designed a second smaller PCB for this. The power board holds two 3V coin cell batteries. The Arduino expects 5V, so [randrews] had to use a voltage regulator. This power board also contains the power switch for the whole system.

The power board was milled and populated. Then it was time to do some measurements. [randrews] measured the current draw and calculates that he should be able to get around 15 hours of play time using the two 3V coin cell batteries. Not bad considering the size.

[via Reddit]

Track Your Dog With This DIY GPS Harness

GPS-dog-harness

Have you ever wondered how far your dog actually runs when you take it to the park? You could be a standard consumer and purchase a GPS tracking collar for $100 or more, or you could follow [Becky Stern's] lead and build your own simple but effective GPS tracking harness.

[Becky] used two FLORA modules for this project; The FLORA main board, and the FLORA GPS module. The FLORA main board is essentially a small, sewable Arduino board. The GPS module obviously provides the tracking capabilities, but also has built-in data logging functionality. This means that [Becky] didn’t need to add complexity with any special logging circuit. The GPS coordinates are logged in a raw format, but they can easily be pasted into Google Maps for viewing as demonstrated by [Becky] in the video after the break. The system uses the built-in LED on the FLORA main board to notify the user when the GPS has received a lock and that the program is running.

The whole system runs off of three AAA batteries which, according to [Becky], can provide several hours of tracking. She also installed a small coin cell battery for the GPS module. This provides reserve power for the GPS module so it can remember its previous location. This is not necessary, but it provides a benefit in that the GPS module can remember it’s most recent location and therefore discover its location much faster. [Read more...]

Follow

Get every new post delivered to your Inbox.

Join 94,651 other followers