Last chance to enter The Hackaday Prize.

3D Printed Virtual Reality Goggles

gaming-loop

Oculus, as we know, was acquired by Facebook for $2 billion, and now the VR community has been buzzing about trying to figure out what to do with all this newly accessible technology. And adding to the interest, the 2nd iteration of the development kits were released, causing a resurgence in virtual reality development as computer generated experiences started pouring out from of every corner of the world. But not everyone can afford the $350 USD price tag to purchase one of these devices, bringing out the need for Do-It-Yourself projects like these 3D printed wearable video goggles via Adafruit.

The design of this project is reminiscent of the VR2GO mobile viewer that came out of the MxR Lab (aka the research environment that spun out Palmer Lucky before he created Oculus). However, the hardware here is more robust and utilizes a 5.6″ display and 50mm aspheric lenses instead of a regular smart phone. The HD monitor is held within a 3D printed enclosure along with an Arduino Micro and 9-DOF motion sensor. The outer hood of the case is composed of a combination of PLA and Ninjaflex printing-filament, keeping the fame rigid while the area around the eyes remain flexible and comfortable. The faceplate is secured with a mounting bracket and a pair of aspheric lenses inside split the screen for stereoscopic video. Head straps were added allowing for the device to fit snugly on one’s face.

At the end of the tutorial, the instructions state that once everything is assembled, all that is required afterwards is to plug in a 9V power adapter and an HDMI cable sourcing video from somewhere else. This should get the console up and running; but it would be interesting to see if this design in the future can eliminate the wires and make this into a portable unit. Regardless of which, this project does a fantastic job at showing what it takes to create a homemade virtual reality device. And as you can see from the product list after the break, the price of the project fits under the $350 DK2 amount, helping to save some money while still providing a fun and educational experience.

[Read more...]

Judge Spotlight: Limor “Ladyada” Fried

judge-spotlight-ladyada

We sent off a list of questions, just like every week, and [Ladyada] offered to do a video response. How awesome is that? Not only did she answer our questions, but she talked at length for several of them. We’re biased, but her explanation about Adafruit’s manufacturing processes and options for home hackers to get boards spun was a real treat.

Perhaps we should step back for a minute though. In case you don’t know [Limor Fried], aka [Ladyada], is a judge for The Hackaday Prize which will award a trip into space and hundreds of other prizes for hackers who build connected devices that use Open Design (Open Hardware and Open Source Software). She’s the founder of Adafruit Industries, an MIT double-grad, and all around an awesome engineer!

Check out the video after the break. We’ve included a list of the questions and the timestamps at which they are answered.

[Read more...]

Handheld Game System Powered by Arduino

DIY Handheld Game System

These days, it’s easy enough to play games on the go. If you have a smart phone, you are pretty much set. That doesn’t mean you can’t still have fun designing and building your own portable gaming system, though.

[randrews] did just that. He started out by purchasing a small memory LCD display from Adafruit. The screen he chose is low power as far as screens go, so it would be a good fit for this project. After testing the screen with a quick demo program, it was time to start designing the circuit board.

[randrews] used Eagle to design the circuit. He hand routed all of the traces to avoid any weird issues that the auto router can sometimes cause. He made an efficient use of the space on the board by mounting the screen over top of the ATMega chip and the other supporting components. The screen is designed to plug in and out of the socket, this way it can be removed to get to the chip. [randrews] needs to be able to reach the chip in order to reprogram it for different games.

Once the board design was finished, [randrews] used his Shapeoko CNC mill to cut it out of a copper clad board. He warns that you need to be careful doing this, since breathing fiberglass dust is detrimental to living a long and healthy life. Once the board was milled out, [randrews] used a small Dremel drill press to drill all of the holes.

The final piece of the puzzle was to figure out the power situation. [randrews] designed a second smaller PCB for this. The power board holds two 3V coin cell batteries. The Arduino expects 5V, so [randrews] had to use a voltage regulator. This power board also contains the power switch for the whole system.

The power board was milled and populated. Then it was time to do some measurements. [randrews] measured the current draw and calculates that he should be able to get around 15 hours of play time using the two 3V coin cell batteries. Not bad considering the size.

[via Reddit]

Track Your Dog With This DIY GPS Harness

GPS-dog-harness

Have you ever wondered how far your dog actually runs when you take it to the park? You could be a standard consumer and purchase a GPS tracking collar for $100 or more, or you could follow [Becky Stern's] lead and build your own simple but effective GPS tracking harness.

[Becky] used two FLORA modules for this project; The FLORA main board, and the FLORA GPS module. The FLORA main board is essentially a small, sewable Arduino board. The GPS module obviously provides the tracking capabilities, but also has built-in data logging functionality. This means that [Becky] didn’t need to add complexity with any special logging circuit. The GPS coordinates are logged in a raw format, but they can easily be pasted into Google Maps for viewing as demonstrated by [Becky] in the video after the break. The system uses the built-in LED on the FLORA main board to notify the user when the GPS has received a lock and that the program is running.

The whole system runs off of three AAA batteries which, according to [Becky], can provide several hours of tracking. She also installed a small coin cell battery for the GPS module. This provides reserve power for the GPS module so it can remember its previous location. This is not necessary, but it provides a benefit in that the GPS module can remember it’s most recent location and therefore discover its location much faster. [Read more...]

Oh, the People You’ll Meet! (at Maker Faire)

 

I might argue that the best thing about Maker Faire isn’t the booths at all, but the people you’ll run into. To that end, I spliced together a series of these impromptu run-ins that I thoroughly enjoyed. What’s remarkable to me is that these people of not weren’t themselves attracting a crowd. If you want to meet the hackers who you respect in the hacking world, you can still have a casual and friendly conversation with them!

First up is [Jeremy Blum] who is a long-time friend of Hackaday, author Exploring Arduino, and one-year member of the Google[x] team. We ran into him along with [Marcus Schappi], CEO of Little Bird Electronics in Australia. [Marcus'] crew recently saw a successful crowd-funding run with the Micro-view.

Next up is [Ben Heck] of The Ben Heck Show. He talks a bit about his recent hack of a pair of texting radios using the eRIC radio modules and he riffed on his past robotic luggage project as well.

The rest of the video is devoted to Hackaday alum. I ran into [Caleb Kraft] who recently started as Community Editor over at MAKE, and [Phil Burgess] who now builds gnarly projects for Adafruit. The clip wraps up with [Ian] from Dangerous Prototypes. He’s fresh off of his Hacker Camp in Shenzhen which covered everything from reballing BGA components by hand, to finding good deals on custom wardrobe, and making sound gastronomic choices while in China.

We talked to a horde of people over two days. Perhaps it was the foam Jolly Wrencher that I wore around? But the point is that everyone at an event like this is interesting to talk to, approachable, and well worth the cost of entry. If you haven’t been to a hacking convention it’s time to start looking around for the one nearest you!

Hackaday Links: May 4, 2014

hackaday-links-chain

We’ve seen a few builds from the Flite Test guys before, like a literal flying toaster, airsoft guns mounted to planes, and giving an electric plane an afterburner (that actually produced a little extra thrust). Now the Flite Test crew is gearing up for the Flite Fest, an all things remote-controlled flight convention in Malvern, Ohio during the last weekend in July. Seems like a pretty cool way to spend spend a weekend.

Unless you get one of those fancy resistor kits where every value has its own compartment in a case or plastic baggie, you’ll soon rue the day your loose resistors become disorganized. [Kirll] has an interesting solution to hundreds of loose resistors: packaging tape. If you want a resistor, just grab a pair of scissors.

Okay, these Adafruit “totally not Muppets™” are awesome. The latest video in the Circuit Playground series is titled, “C is for Capacitor“. There’s also “B is for Battery“, because when life gives you lemons, light up an LED. Here’s the coloring book.

A few years ago, a couple of people at the LA Hackerspace Crashspace put together an animated flipbook device – something between a zoetrope and the numbers in those old electromechanical clocks – and launched a kickstarter. Now they’re putting on a show, presented by Giant Robot, featuring the animated art of dozens of artists.

Vintage electronics? Yes. Vintage Soviet electronics? Here’s 140 pages of pictures, mostly of old measurement devices.

 

Body of a Trinket, Soul of a Digispark

TrinketDigispark

Adafruit’s Trinket and digiStump’s Digispark board are rather close cousins. Both use an ATtiny85 microcontroller, both have USB functionality, and both play nice with the Arduino IDE. [Ray] is a fan of both boards, but he likes the Trinket hardware a bit better. He also prefers the Digispark libraries and ecosystem. As such, he did the only logical thing: he turned his Trinket into a Digispark. Step 1 was to get rid of that pesky reset button. Trinket uses Pin 1/PB5 for reset, while Digispark retains it as an I/O pin. [Ray] removed and gutted the reset button, but elected to leave its metal shell on the board.

The next step was where things can get a bit dicey: flashing the Trinket with the Digispark firmware and fuses. [Ray] is quick to note that once flashed to Digispark firmware, the Trinket can’t restore itself back to stock. A high voltage programmer (aka device programmer) will be needed. The flashing process itself is quite a bit easier than a standard Trinket firmware flash. [Ray] uses the firmware upload tool from the Micronucleus project. Micronucleus has a 60 second polling period, which any Trinket veteran will tell you is a wonderful thing. No more pressing the button and hoping you start the download before everything times out! Once the Trinket is running Digispark firmware, it’s now open to a whole new set of libraries and software.

Follow

Get every new post delivered to your Inbox.

Join 91,230 other followers