Battery Basics – Choosing a Battery for Your Project

If choosing a rechargeable battery for your project intimidates you, [Afroman] has prepared a primer video that should put you at ease. In this tutorial for battery basics he not only walks you through a choice of 5 rechargeable chemistries and their respective tradeoffs, but gives a procedure that will allow you to navigate through the specs of real-world batteries for sale – something that can be the most intimidating part of the process.

You cannot learn everything about batteries in 9 minutes, but watching this should get you from zero to the important 80% of the way there. Even if your project does not give you the specs you need to begin buying, [Afroman] tells you what to measure and how to shop for it. In particular, the information he gives is framed in the context you care about, hopefully ensuring you are not waylaid by all the details that were safe to ignore. If this is not enough, [Afroman]’s prequel video on battery terminology has more detail.

Much like your high school English teacher told you, you need to know the rules before you can choose to break them. Many of battery absolute Dos or Don’ts are written for the manufacturer, who provides for the consumer, not the hacker. Hackaday has published hundreds of battery articles over the years; search our archives when you are ready for more.

Continue reading “Battery Basics – Choosing a Battery for Your Project”

Extending the battery life of LED dominoes

[Fede.tft] wrote in to tell us about some work he’s been doing to save battery life for LED dominoes. He originally got the idea after reading this post about the electronic gaming pieces. That project was aimed at the 555 timer contest and therefore, used a 555 timer. [Fede.tft] calculates the battery life for the CR2302 battery in the 555 circuit at no more than about 80 days. That’s if you never use them and the LEDs are never illuminated. It makes sense to remove the batteries from the device when not in use, but a redesign to increase efficiency is definitely worth the effort.

This rendition does away with the 555 chip in favor of a CMOS chip. By building a circuit around four NAND gates of a CD4011 chip, the standby lifetime of the battery is calculated to increase to about 4.5 years. Not bad! Add to this the fact that replacing the 555 timer didn’t increase the component count, the price for the chip is similar to the 555, and you didn’t need to resort to a microcontroller. Yep, we like it.

Sleepy Arduino saves batteries

06_11 (Custom)

Battery life is often overlooked when building projects, especially for beginners. This tutorial takes you through the setup of power saving modes for the Arduino. Utilizing the watchdog and sleep functions, they put the chip into a hibernation mode between cycles. An optimum configuration could take your battery life from 4 days to about 3 years.  For a lot of you, this is old news. But for the rest, this is really good stuff. You can download a sample application from the site that mimics the singing of a nightingale when the sun goes down.

Maximize the iPhone 3G’s battery life


Gizmodo has posted a guide for extending the battery life of your shiny new iPhone 3G. Apple is notorious for pushing products with unimpressive battery life, and the new iPhone is no different. The battery isn’t user-replaceable, which means you can’t keep a spare, and the energy needs of the 3G chipset adds to the problem. Apple provides some useful tips on maximizing battery life for your iPhone. The tips include common sense advice that applies to nearly all electronic devices – turning down the brightness on your LCD screen, turning off radios not in use like Bluetooth, WiFi, GPS, and 3G, and setting Auto-lock to a minute or less will keep your devices running smoothly for longer.

We like to carry an extra USB battery like this one; you can also make your own like this one with an Altoids tin.