Video: Getting Your Feet Wet with Programmable System On Chip

 

Ever since I received my PSOC 4 Pioneer kit from Cypress I have wanted to play with this little mixed-signal Programmable System-on-Chip (PSOC) developer board. I love developer boards, providing that they are priced in a way to entice me to not only open my wallet but also make time in a busy schedule. I think my kit was free after winning a swag bag from Adafruit that they themselves obtained at the Open Hardware Summit and gave away on their weekly streamcast. Ultimately it was the invitation to beta test datasheet.net which also was included in that pile of swag that led to my getting involved with Hackaday.

Pioneer 4 Development Kit

PSCO4 Development Board on Hackaday

What is Programmable System On Chip?

So what is a PSOC 4? A quick summary is that it’s based on an ARM Cortex reduced instruction set processor (RISC) and is somewhat capable of supporting shields based on the Arduino footprint, and it also uses a bright red PCB that I have come to associate with a Sparkfun PCB. What doesn’t show is the fact that this programmable system on chip has programmable analog function blocks in addition to programmable digital logic blocks. There is also some supporting input/output circuitry such as a multicolored LED and a capacitive touch sensor directly on the PCB.

This is an intriguing amount of programmability, so much so that Newark/Element 14 highlighted a “100 projects in 100 days” event on it.

Enter the IDE

Over the years I have had to create or install many Integrated Development Environments (IDE) that linked hardware to software. Knowing that you had to, and how to, implement an IDE was part of being an engineer. Nowadays with the Arduino type environment the user has an IDE pretty much as soon as they click on the executable which I find to be one of the best aspects of the genre. It was so quick in fact that I was able to get my teenaged son into writing his first program even before he remembered to do massive eye-rolls and make sounds of utter disdain. He did give up however, just shy of learning how to have the Arduino make sounds of disdain on his behalf.

PSCo4 Cypress Development Kit on Hackaday

Closeup of a Programmable System on Chip Development System

[Read more...]

Hot or Not? Find Out How to Calculate Component Heat and Why You Should

How hot are your key components getting? There’s a good chance you’ve built a project and thought: “Well I guess I better slap a heat sink in there to be safe”. But when working on a more refined build you really need to calculate heat dissipation to ensure reliability. This is actually not tough at all. The numbers are right there in the datasheet. Yes, that datasheet packed with number, figures, tables, graphs, slogans, marketing statements, order numbers… you know right where to look, don’t you?

Hackaday has you covered on this one. In under 10 minutes [Bil Herd] will not only show how easy these calculations are, he’ll tell you where to look in the datasheets to get the info you need quickly.

[Read more...]

Guest Post: The Real Story of Hacking Together the Commodore C128

Before Apple there was Commodore

Behind the C-128 from a 1985 Ad

The most popular computer ever sold to-date, the Commodore C-64, sold 27 Million units total back in the 1980’s.  Little is left to show of those times, the 8-bit “retro” years when a young long-haired self-taught engineer could, through sheer chance and a fair amount of determination, sit down and design a computer from scratch using a mechanical pencil, a pile of data books, and a lot of paper.

My name is Bil Herd and I was that long-haired, self-educated kid who lived and dreamed electronics and, with the passion of youth, found himself designing the Commodore C-128, the last of the 8-bit computers which somehow was able to include many firsts for home computing. The team I worked with had an opportunity to slam out one last 8 bit computer, providing we accepted the fact that whatever we did had to be completed in 5 months… in time for the 1985 Consumer Electronics Show (CES) in Las Vegas.

We (Commodore) could do what no other computer company of the day could easily do; we made our own Integrated Circuits (ICs) and we owned the two powerhouse ICs of the day; the 6502 microprocessor and the VIC Video Display IC.  This strength would result in a powerful computer but at a cost; the custom IC’s for the C-128 would not be ready for at least 3 of the 5 months, and in the case of one IC, it would actually be tricked into working in spite of itself.

[Read more...]