Hackaday Links: August 6th, 2017

We get a lot of Kickstarter pitches in our email, but this one is different. First of all, it’s over. No biggie there. Secondly, it’s a laser-cut hurdy gurdy. What’s a hurdy gurdy? It’s a musical instrument that uses a wheel to vibrate strings. It has drone strings and a rudimentary keyboard for the melody. Think of it as ‘string bagpipes’ and you’re not that far off. This means you can laser cut (or 3D print, someone get on it) a hurdy gurdy, and that’s just awesome.

I wrote the previous paragraph without referencing Donovan. You’re welcome, Internet.

[Spencer] found a few very small seven-segment flip display units. This, of course, meant he had to build a clock. Right now [Spencer] is in the PCB design stage of the project, with the hope of finishing it before school starts. There is still an open question here: where do you get really tiny flip segment displays?

Perhaps we’ve said too much about the number one badge at this year’s DEF CON, but this is really the project that just keeps giving. [Hyr0n] thought it would be a great idea to have a shirt printed with the design of this year’s official Hackaday DEF CON badge. This seemed simple enough — all he needed to do was send the design off to a custom printed t-shirt place on the Internet and wait a week or two. This is where things got a little nuts. [Hyr0n] stole my intellectual property. My very intellectual property. Here’s a great tip for when a t-shirt place puts your order on hold because of a copyright: just say it’s creative commons, they’ll send it right on through.

The DIY-VT100 is a miniature VT100 (and VT102) terminal, because sometimes you need a standalone serial terminal. Soon, it’s going to be a Crowd Supply campaign. Who’s going to be the first to 3D print a look-alike VT100 enclosure for this little thing? Where can you get pre-bromiated filament?

We all know what the Atari 2600 is, but what is the Atari 2700? It’s an exceptionally rare prototype that used wireless controllers. One was found in a thrift store recently. [L064N] bought it for $30, and sold it on eBay for $3000.

Here’s a weird thing [Yann] sent in. The Rise mP6 was a non-Intel, non-AMD, non-Cyrix, non-VIA, x86 compatible CPU sold in the late 90s.  What’s cool about it? Three parallel MMX instructions, and an easter egg hidden in the microcode. The principal engineer on the project, [Chris Norrie], decided he wanted to hide his name in the CPU, and managed to do it without anyone else catching on. If you put ‘NZ’ into eAX and execute CPUID, it returns “* Chris Norrie *”. That’s a hack, and it’s amazing.

Friday Hack Chat: Crowd Supply

Crowdfunding is a mixed bag, at best. On one hand, you have fantastically successful products like Pebble, Oculus, and the Kano personal computer that managed to take in money, turn out a product, and become a successful company. (If even just for a while, the Pebble was great.) On the other hand, you have obvious scams like a color-picking pen that are run by a literal Nigerian scammer.

Crowd Supply is different. Unlike other crowdfunding platforms, to get on Crowd Supply you’ll need a working prototype. Where other platforms can measure their success by how many campaigns were successfully funded, and how many of those campaigns successfully delivered rewards to backers, I’m not aware of any Crowd Supply campaigns that have ever failed completely.

For this week’s Hack Chat, we’ll be talking with [Josh Lifton], CEO of Crowd Supply. Topics will include determining if there’s a market for your product, the ins and outs of fulfillment, to shipping your product. We’re taking questions from the community, and there’s a question sheet we’ll be reading from.

Josh has a PhD from the MIT Media Lab and holds a BA in physics and mathematics from Swarthmore College. Prior to Crowd Supply, Josh worked in a variety of technology settings, from instrumenting thousands of audience members with custom wearable computers for a Cirque du Soleil performance to, most recently, serving as head of engineering at Puppet Labs.

Here’s How To Take Part:

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This Hack Chat will take place at noon Pacific time on Friday, July 28th. Confused about where and when ‘noon’ is? Here’s a time and date converter!

Log into Hackaday.io, visit that page, and look for the ‘Join this Project’ Button. Once you’re part of the project, the button will change to ‘Team Messaging’, which takes you directly to the Hack Chat.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Open-V, The First Open Source RISC-V Microcontroller

Open Source software has been around for decades. Over these decades, Open Source software has been the driving force behind most of the Internet, and all of the top-500 supercomputers. The product of the Open Source software movement is perhaps more important than Gutenberg’s press. But hardware has not yet fully embraced this super-charging effect of openness. Being able to simply buy an open source CPU, free of all proprietary bits and NDAs is impossible.

Now, this is finally changing. OnChip, a startup from a group of doctoral students at the Universidad Industrial de Santander in Colombia, have been working on mRISC-V, an open 32-bit microcontroller based on the RISC-V instruction set. It’s now a crowdfunding campaign, and yes, you can simply buy an open source chip.

We’ve taken a look at onchip’s Open microcontroller project before. The team has made significant progress of moving from something that can run on an FPGA to the tapeout of a real, physical chip. The onchip twitter timeline is a flurry of activity, with real silicon and a prediction that 50% of low-end microcontrollers will be running RISC-V in a decade.

A render of the Open-V dev board

If you want to get your hands on one of these open microcontrollers, the Crowd Supply campaign is actually fairly reasonable, considering this is custom silicon. $49 USD gets you a first-run mRISC-V in a QFN-32 package. $99 gets you the mRISC-V dev board with an SD card slot, USB, regulators, and of course the micro itself.

This chip’s capabilities are almost on par with a low-power ARM Cortex M0. The chip itself runs at 160MHz, has SPI, I2C, SDIO, and JTAG, as well as a 10-bit 10MS/s ADC and a 12-bit DAC. There are 16 GPIO pins on mRISC-V. You won’t be able to build a smartphone or laptop with this chip, but you will be able to build an Internet of Things gizmo.

While OnChip’s efforts won’t result in a completely open source smartphone, there are other projects in the works that will bring an Open Source core to more powerful devices. lowRISC is a project to bring a Linux-capable System on Chip to production, and various people smarter than us have brought GCC, LLVM, and QEMU to the architecture.

Most of the efforts to bring the RISC-V architecture, and indeed most Open Source processors, have focused on the big chips — full CPUs and SoCs. Onchip’s mRISC-V goes the other direction to create a small, open microcontroller. If you’re looking to create an ecosystem of Open processors, this makes a lot of sense; there are more Honda Civics on the road than Lamborghinis, and Microchip and TI ship far more microcontrollers every year than Intel ships CPUs.