Flite Test at NYC Maker Faire

NYC Maker Faire may be a no fly zone this year, but that didn’t dampen the spirits of the Flite Test Crew. We met with Flite Test outside their tent in the R/C and drone area of Maker Faire. [Josh Bixler and Alex Zvada] are two of the hosts of the popular YouTube channel. [Josh] is also well-known for his R/C plane designs, such as the Bloody Wonder and Simple Storch. In addition to hosting, [Alex] is the graphic designer Flite Test. He is also an ace quadcopter pilot, and can be found flying his 250 sized chase quad in many episodes.

Most of Flite Test’s designs utilize Readi-Board, available at Dollar-Tree stores around the USA and Canada. The Flite Test crew is working directly with the manufacturer of this foam to make it, and their designs available all over the world.

The team also takes up incredible challenges such as a flying toaster which actually works, making toast as it files. Their flying cinder block is not to be missed either. Their biggest challenge to date was the Google Project Wing + Amazon Prime Air mashup. The video featured a drone that delivered a drone that delivered a drone that delivered a drone that delivered a stick of gum. Matryoshka dolls have nothing on these guys!

Rotor DR1 and Collaborative Development

In a post apocalyptic world ravaged by the effects of a virus, a young man searches for his father. He forms a friendship with a young woman and a delivery drone that seems oddly sentient. Together they have to fight through abandoned buildings, and past gangs of thugs, to find…

That’s the hook for Rotor DR1, a web series currently in production. Rotor DR1 isn’t a big budget movie, but an independent series created by [Chad Kapper]. [Chad] isn’t new to film or drones, his previous project was Flite Test, which has become one of the top YouTube channels for drones and radio controlled aircraft in general. With the recent sale of Flite Test to Lauren International, [Chad] has found himself with the time to move forward on a project he’s been talking about for years.

Click past the break for more information, and to check out the Rotor DR1 trailer.

Continue reading “Rotor DR1 and Collaborative Development”

THP Semifinalist: Autonomous Recharging For Multirotors

Even with visions of quadcopters buzzing around metropolitan areas delivering everything from pizzas to toilet paper fresh in the minds of tech blogospherites, There’s been a comparatively small amount of research into how to support squadrons of quadcopters and other unmanned aerial vehicles. The most likely cause of this is the FAA’s reactionary position towards UAVs. Good thing [Giovanni] is performing all his research for autonomous recharging and docking for multirotors in Australia, then.

The biggest obstacle of autonomous charging of a quadcopter is landing a quad exactly where the charging station is; run of the mill GPS units only have a resolution of about half a meter, and using a GPS solution would require putting GPS on the charging station as well. The solution comes from powerful ARM single board computers – in this case, an Odroid u3 – along with a USB webcam, OpenCV and a Pixhawk autopilot.

Right now [Giovanni] is still working out the kinks on his software system, but he has all the parts and the right tools to get this project up in the air, down, and back up again.


SpaceWrencherThe project featured in this post is a semifinalist in The Hackaday Prize.

Extrinsic Motivation: Smart Antenna Tracker for R/C Aircraft

Long distance FPV (First Person View) flying can be a handful. Keeping a video feed alive generally requires a high gain directional antenna. Going directional creates the chore of keeping the antenna pointed at the aircraft. [Brandon’s] smart antenna tracker is designed to do all that automatically. What witchcraft is this, you ask? The answer is actually quite simple: Telemetry! Many flight control systems have an optional telemetry transmitter. [Brandon] is using the 3DRobotics APM or PixHawk systems, which use 3DR’s 915 MHz radios.

The airborne radio sends telemetry data, including aircraft latitude and longitude down to a ground station. Equipped with a receiver for this data and a GPS of its own, the smart antenna tracker knows the exact position, heading and velocity of the aircraft. Using a pan and tilt mount, the smart antenna tracker can then point the antenna directly at the airborne system. Since the FPV antenna is co-located on the pan tilt mount, it will also point at the aircraft and maintain a good video link.

One of the gotchas with a system like this is dealing with an aircraft that is flying directly overhead. The plane or rotorcraft can fly by faster than the antenna system can move. There are a few commercial systems out there that handle this by switching to a lower gain omnidirectional whip antenna when the aircraft is close in. This would be a great addition to [Brandon’s] design.

Droning On: Maiden Flights

do-55

When we last left off, the Hackaday Drone Testbed was just a box of parts on workbench. Things have changed quite a bit since then! Let’s get straight to the build.

With the arms built and the speed controls soldered up, it was simply a matter of bolting the frame itself together. The HobbyKing frame is designed to fold, with nylon washers sliding on the fiberglass sheets. I don’t really need the folding feature, so I locked down the nylock nuts and they’ve stayed that way ever since. With the arms mounted, it was finally starting to look like a quadcopter.

drone1

Using the correct screws, the motors easily screwed into the frames. I did have to do a bit of filing on each motor plate to get the motor’s screw pattern to fit. The speed controls didn’t have a specific mount, so I attached them to the sides of the arms with double-sided tape and used some zip ties to ensure nothing moved. In hindsight I should have mounted them on the top of the arms, as I’m planning to put LED light strips on the outside of edges of the quad. The LEDs will help with orientation and ensure a few UFO sightings during night flights.

Power distribution is a major issue with multicopters. Somehow you have to get the main battery power out to four speed controls, a flight controller, a voltage regulator, and any accessories. There are PCBs for this, which have worked for me in the past. For the Hackaday Testbed, I decided to go with a wiring harness. The harness really turned out to be more trouble than it was worth. I had to strip down the wires at the solder joint to add connections for the voltage regulator. The entire harness was a bit longer than necessary. There is plenty of room for the excess wire between the main body plates of the quad, but all that copper is excess weight the ‘bench’ doesn’t need to be carrying. The setup does work though. If I need to shed a bit of weight, I’ll switch over to a PCB.

Click past the break to read the rest of the story.

Continue reading “Droning On: Maiden Flights”

Aerodynamics? Super Honey Badger Don’t Give a @#*^@!

honeybadger-rcplane

[Arron Bates] is a pro R/C Pilot from Australia. He’s spent the last few years chasing the dream of a fixed wing plane which could perform unlimited spins. After some promising starts with independently controlled wing spoilers, [Arron] went all in and created The Super Honey Badger. Super Honey Badger is a giant scale R/C plane with the tail of a helicopter and a soul of pure awesome.

Starting with a standard 87″ wingspan Extra 300 designed for 3D flight, [Arron] began hacking. The entire rear fuselage was removed and replaced with carbon fiber tubes. The standard Extra 300 tail assembly fit perfectly on the tubes. Between the abbreviated fuselage and the tail, [Arron] installed a tail rotor from an 800 size helicopter. A 1.25 kW brushless motor drives the tail rotor while a high-speed servo controls the pitch.

[Arron] debuted the plane at HuckFest 2013, and pulled off some amazing aerobatics. The tail rotor made 540 stall turn an easy trick to do – even with an airplane. Flat spins were a snap to enter, even from fast forward flight! Most of [Arron’s] maneuvers defy any attempt at naming them – just watch the videos after the break.

Sadly, Super Honey Badger was destroyed in May of 2014 due to a structural failure in the carbon tubes. [Arron] walked away without injury and isn’t giving up., He’s already dropping major hints about a new plane (facebook link).

Continue reading “Aerodynamics? Super Honey Badger Don’t Give a @#*^@!”

Flight For Your Right (And Do It By Friday)

Model aircraft

About a month ago, the FAA – the governing body for nearly everything that flies in US airspace – proposed an interpretation of their rules governing model aircraft. The world hasn’t ended quite yet, but if the proposed rules go into effect, an entire hobby will be destroyed in the United States. While congress has given the FAA authority over nearly everything that flies, there are specific laws saying what the FAA has no jurisdiction over – model aircraft being one of the major exceptions.

Congress, however, is working on a definition of model aircraft that is at least 10 years out of date and doesn’t have any leeway for the huge advances in technology that have happened since then. Specifically, all FPV flight with video goggles would be banned under the proposed FAA rules. Also, because model aircraft are defined as being for, ‘hobby or recreational purposes,’ anyone who flies a model aircraft for money – a manufacturer conducting flight tests on a new piece of equipment, or even anyone who records a video of their flight, uploads it to YouTube, and hits the ‘monetize’ button – would be breaking the law.

The proposed FAA rules for model aircraft are not in effect yet, and you can still make a public comment on the proposal until 11:59 PM EDT Friday. If you leave a comment, please make a well-reasoned statement on why the FAA’s interpretation of the rules governing model aircraft are overly broad, do not take into account technological advances made since the drafting of Congress’ working definition of ‘model aircraft,’ and the effects of a complete ban flying model aircraft for any type of compensation.

notgood
This is not a good comment.

Of course, if the proposed rules for model aircraft go through, the only option will be to turn to the courts. Historically, the FAA simply does not lose court cases. Recently, cases involving drones have come up with successful defenses and judges deciding in favor of drone operators. The legal services for the eventual court case challenging the proposed FAA rules will most likely be funded by the Academy of Model Aeronautics, who just so happen to be offering membership at 50% off.

Below is a video of some RC people we really respect – [Josh] from Flite Test and [Trappy] of Team BlackSheep – talking about what the proposed rule change would do to the hobby. There’s also a great podcast featuring the first lawyer to successfully defend drone use in federal court that’s worth a listen.

Continue reading “Flight For Your Right (And Do It By Friday)”