Explosions that Save Lives

Normally, when something explodes it tends to be a bad day for all involved. But not every explosion is intended to maim or kill. Plenty of explosions are designed to save lives every day, from the highway to the cockpit to the power grid. Let’s look at some of these pyrotechnic wonders and how they keep us safe.

Explosive Bolts

The first I can recall hearing the term explosive bolts was in relation to the saturation TV coverage of the Apollo launches in the late 60s and early 70s. Explosive bolts seemed to be everywhere, releasing umbilicals and restraining the Saturn V launch stack on the pad. Young me pictured literal bolts machined from solid blocks of explosive and secretly hoped there was a section for them in the hardware store so I could have a little fun.

Pyrotechnic fasteners are mechanical fasteners (bolts, studs, nuts, etc.) that are designed to fail in a predictable fashion due to the detonation of an associated pyrotechnic device. Not only must they fail predictably, but they also have to be strong enough to resist the forces they will experience before failure is initiated. Failure is also typically rapid and clean, meaning that no debris is left to interfere with the parts that were previously held together by the fastener. And finally, the explosive failure can’t cause any collateral damage to the fastened parts or nearby structures.

Explosive bolt. Source: Ensign-Bickford Aerospace & Defense
Explosive bolt. Source: Ensign-Bickford Aerospace & Defense

Pyrotechnic fasteners fall into two broad categories. Explosive bolts look much like regular bolts, and are machined out of the same materials you’d expect to find any bolt made of. The explosive charge is usually internal to the shank of the bolt with an initiating device of some sort in the head. To ensure clean, predictable separation, there’s a groove machined into the bolt to create a shear plane.

Frangible nut and booster, post-use. Source: Space Junkie's Space Junk
Frangible nut and booster, post-use. Source: Space Junkie’s Space Junk

Frangible nuts are another type of pyrotechnic fastener. These tend to be used for larger load applications, like holding down rockets. Frangible nuts usually have two smaller threaded holes adjacent to the main fastener thread; pyrotechnic booster charges split the nut across the plane formed by the threaded holes to release the fastener cleanly.

“Eject! Eject! Eject!”

Holding back missiles is one thing, but where pyrotechnic fasteners save the most lives might be in the cockpits of fighter jets around the world. When things go wrong in a fighter, pilots need to get out in a hurry. Strapping into a fighter cockpit is literally sitting on top of a rocket and being surrounded by explosives. Most current seats are zero-zero designs — usable at zero airspeed and zero altitude — that propel the seat and pilot out of the aircraft on a small rocket high enough that the parachute can deploy before the pilot hits the surface. Dozens of explosive charges take care of ripping the aircraft canopy apart, deploying the chute, and cutting the seat free from the parachuting pilot, typically unconscious and a couple of inches shorter from spinal disc compression after his one second rocket ride.

Behind the Wheel

There’s little doubt that airbags have saved countless lives since they’ve become standard equipment in cars and trucks. When you get into a modern vehicle, you are literally surrounded by airbags — steering wheel, dashboard, knee bolsters, side curtains, seatbelt bags, and even the rear seat passenger bags. And each one of these devices is a small bomb waiting to explode to save your life.

When we think of explosives we tend to think of substances that can undergo rapid oxidation with subsequent expansion of hot gasses. By this definition, airbag inflators aren’t really explosives, since they are powered by the rapid chemical decomposition of nitrogenous compounds, commonly sodium azide in the presence of potassium nitrate and silicon dioxide. But the difference is purely academic; anyone who has ever had an airbag deploy in front of them or watched any of the “hold my beer and watch this” airbag prank video compilations will attest to the explosive power held in that disc of chemicals.

When a collision is detected by sensors connected to the airbag control unit (ACU), current is applied to an electric match, similar to the engine igniters used in model rocketry, buried within the inflator module. The match reaches 300°C within a few milliseconds, causing the sodium azide to rapidly decompose into nitrogen gas and sodium. Subsequent reactions mop up the reactive byproducts to produce inert silicate glasses and add a little more nitrogen to the mix. The entire reaction is complete in about 40 milliseconds, and the airbags inflate fully within 80 milliseconds, only to deflate again almost instantly through vent holes in the back of the bag. By the time you perceive that you were in an accident, the bag hangs limply from the steering wheel and with any luck, you get to walk away from the accident.

Grid Down

We’ve covered a little about utility poles and all the fascinating bits of gear that hang off them. One of the pieces of safety gear that lives in the “supply space” at the top of the poles is the fuse cutout, or explosive disconnector. This too is a place where a small explosion can save lives — not only by protecting line workers but also by preventing a short circuit from causing a fire.

Cutouts are more than just fuses, though. Given the nature of the AC transmission and distribution grid, the lines that cutouts protect are at pretty high voltages of 11 kV or more. That much voltage means the potential for sustained arcing if contacts aren’t rapidly separated; the resulting plasma can do just as much if not more damage than the short circuit. So a small explosive cartridge is used to rapidly kick the fuse body of a cutout out of the frame and break the circuit as quickly as possible. Arc suppression features are also built into the cutout to interrupt the arc before it gets a chance to form.

[Big Clive] recently did a teardown of another piece of line safety gear, an 11 kV lightning arrestor with an explosive disconnector. With a Dremel tool and a good dose of liquid courage, he liberated a carbon slug from within the disconnector, which when heated by a line fault ignites a .22 caliber charge similar to those used with powder actuated fastener tools. The rapid expansion of gasses ruptures the cases of the disconnector and rapidly breaks the circuit.

Conclusion

We’ve covered a few of the many ways that the power of expanding gas can be used in life safety applications. There are other ways, too — snuffing out oil field fires comes to mind, as does controlled demolition of buildings. But the number of explosives protecting us from more common accidents is quite amazing, all the more so when you realize how well engineered they are. After all, these everyday bombs aren’t generally blowing up without good reason.

Let’s Blow Up an Explosive Lightning Arrestor

Lightning is some nasty stuff. Luckily, it doesn’t have a very long lifespan. [BigClive] decided to tear down an 11KV lighting arrestor used in power distribution systems. The fiberglass core has silicone rubber water-shedding disks that make the unit look sort of floppy, but inside is some serious hardware.

To protect the circuit, metal oxide varistors shunt high voltage from a lightning strike to ground as you’d expect. The interesting part is how the device deals with failure. It would be a disaster if the device shorted the 11KV power line to ground for any length of time due to a fault. To prevent that problem, a resistor heats up when struck by lightning and triggers an explosive charge that disconnects the ground wire and releases a flag to indicate the failure.

[BigClive] triggered the charge in the video below. So if you like to see things explode in a bucket of water, you’ll enjoy the video.

Continue reading “Let’s Blow Up an Explosive Lightning Arrestor”

Anvil Firing: Awesome or Reckless?

The English language needs a word for “awesome and dangerous simultaneously”.

We recently ran into the strange pastime of anvil shooting on YouTube (where else?). The idea is that you pack about a pound (!) of black powder between two anvils and light it up. The powder explodes, and the top anvil gets shot into the air. Hilarity ensues, if everyone’s far enough away and wearing hearing protection.

Continue reading “Anvil Firing: Awesome or Reckless?”

Retrotechtacular: Firepower For Freedom

As the United States were settled, its leaders found that they needed firepower to preserve freedom. This became especially apparent during the military engagements of the era, so a number of specialized facilities were founded to manage the research, development, manufacture, and dissemination of different types of munitions.

Picatinny Arsenal in New Jersey was the place for both nuclear and conventional weapon development. The men and women working in this facility created anti-personnel devices, including a flexible, adhesive charge called Flex-X that could be affixed to almost anything. This demolition charge could be layered for increased power, and could even detonate underwater. Picatinny also developed new rocket engines, propellants, and liquid propulsion for projectiles.

In Pennsylvania, a small-arms ammunition plant called Frankford Arsenal developed a duplex rifle cartridge. That is, a lead projectile fires on target, and a second one sitting behind it in the cartridge shoots at an angle, landing an inch or so near the lead bullet. Frankford workers also ground precision optics for target sighting and centering, and developed a case-less cartridge. Propellants geared for a wide variety of uses also came out of Frankford. These propellants were employed to deliver nerve agent antidotes, inflate life rafts quickly, and eject pilots from sketchy situations.

The Edgewood Arsenal in Baltimore specializes in the research and development, manufacture, and supply of chemical weapons. They are particularly adept at fire suppression. Edgewood research has provided civilian benefits as well, such as an anthrax vaccine. In addition, Fort Detrick, Maryland contains a biological R&D wing where vital antidotes and vaccines are developed.

All of this R&D and manufacture was orchestrated by the Ammunition Procurement and Supply Agency (APSA) located near Joliet, IL. In addition to reviewing all contractor bids with equal consideration, APSA controlled distribution, maintaining inventory on large computers that could crunch numbers like nobody’s business.

Continue reading “Retrotechtacular: Firepower For Freedom”

A Kitchen Timer Fit for MacGyver

Here’s a project that you don’t want to bring into an airport, ship through the mail, or probably even remove from your home. [ProjectGeek] has built himself a simple kitchen timer masquerading as a bomb. The build is actually pretty simple, but the end result is something that would look at home in a Hollywood action flick.

The timer circuit is built from four simple components. An 8051 microcontroller board is used as the primary controller and timer. The code is available on GitHub. This board is attached to a another board containing four momentary push buttons. These are used to program the timer and to stop the buzzing. Another board containing four 7-segment displays is used to show the remaining time on the timer. A simple piezo buzzer is used to actually alert you when the timer has run out. All of these components are connected with colorful jumper wires.

The physical part of this build is made from easily available components. Old newspapers are rolled up to form the “explosive” sticks. These are then covered in plain brown paper ordinarily used to cover text books. The rolls are bundled together and fixed with electrical tape. The electronics can then be attached to the base with some hot glue or double-sided tape.

Wireless fireworks controller


[Tuckie] sent in his wireless fireworks controller. The electronic parts are off the shelf – a 12 channel relay board and remote provide the guts. He used a rock tumbler to mill the black powder needed to make the detonators. A combination of the fine ground black powder, nichrome wire and ping pong balls makes up the business end of each detonator. When a channel is selected with the remote, the relay is activated, current is sent to the detonator which is taped to the firework fuse.