Laser Surgery: Expanding the Bed of a Cheap Chinese Laser Cutter

Don’t you just hate it when you spend less than $400 on a 40-watt laser cutter and it turns out to have a work area the size of a sheet of copy paper? [Kostas Filosofou] sure did, but rather than stick with that limited work envelope, he modified his cheap K40 laser cutter so it has almost five times the original space.

The K40 doesn’t make any pretenses — it’s a cheap laser cutter and engraver from China. But with new units going for $344 on eBay now, it’s almost a no-brainer. Even with its limitations, you’re still getting a 40-watt CO2 laser and decent motion control hardware to play with. [Kostas] began the embiggening by removing the high-voltage power supply from its original space-hogging home to the right of the work area. With that living in a new outboard enclosure, a new X-Y gantry of extruded aluminum rails and 3D-printed parts was built, and a better exhaust fan was installed. Custom mirror assemblies were turned, better fans were added to the radiator, and oh yeah — he added a Z-axis to the bed too.

We’re sure [Kostas] ran the tab up a little on this build, but when you’re spending so little to start with, it’s easy to get carried away. Speaking of which, if you feel the need for an even bigger cutter, an enormous 100-watt unit might be more your style.

Continue reading “Laser Surgery: Expanding the Bed of a Cheap Chinese Laser Cutter”

Wirelessly Charge Your Phone From High Voltage Power Lines

Using nothing more than an antenna, a spark plug, a flyback transformer, a diode, and a car phone charger, [Kreosan] have implemented the world’s most dangerous cell-phone charger: wirelessly charging their phone from high voltage power lines. This is a demonstration of a hack that we thought was just an urban legend, but it’s probably best to leave this as just a demo — this one is probably illegal and definitely dangerous.

The charger works by holding an old TV aerial fairly close to high voltage overhead cables, and passing the resulting tiny current through a spark plug and a flyback transformer to ground. To charge the phone, they tapped the transformer, rectified it through a diode, and fed it into a car-plug phone charger. [Kreosan] claims to harvest enough “free” electricity to charge the phone. (Where by “free”, we mean stolen from the electric grid.)

If you regularly find yourself running out of charge and like a bit of danger why not make a power bank that looks like a bomb instead. Sure we don’t advise you take it on a plane but it seems like a much safer option than using overhead power lines.

Continue reading “Wirelessly Charge Your Phone From High Voltage Power Lines”

How Does a Voltage Multiplier Work?

If you need a high voltage, a voltage multiplier is one of the easiest ways to obtain it. A voltage multiplier is a specialized type of rectifier circuit that converts an AC voltage to a higher DC voltage. Invented by Heinrich Greinacher in 1919, they were used in the design of a particle accelerator that performed the first artificial nuclear disintegration, so you know they mean business.

Theoretically the output of the multiplier is an integer times the AC peak input voltage, and while they can work with any input voltage, the principal use for voltage multipliers is when very high voltages, in the order of tens of thousands or even millions of volts, are needed. They have the advantage of being relatively easy to build, and are cheaper than an equivalent high voltage transformer of the same output rating. If you need sparks for your mad science, perhaps a voltage multiplier can provide them for you.

Continue reading “How Does a Voltage Multiplier Work?”

200KV Capacitor Uses Cake Pan and Bowl

[PhysicsGirl] posts videos that would be good to use in a classroom or homeschool environment. She recently showed a 200KV capacitor made from a cake pan, a bowl, and some other common items (see video, below).

One of the most interesting things about the project was how they charged the capacitor. A PVC pipe and some common hardware made a wand that they’d charge by rubbing a foam sleeve up and down against the dome formed by a metal bowl. We might have used a cat, but there’s probably some law against that.

To discharge, they used the end of the wand and were able to get a 10 cm spark. Based on the dielectric constant for air, they estimated that equated to a 200KV charge. They also discharged it through someone’s finger, which didn’t seem like a great idea.

We’ve talked about [PhysicsGirl’s] videos before. Granted, a lot of this won’t help the experienced hacker, but if you work with kids, they are a great way to make physics interesting and approachable. We wish she’d spent more time on the actual construction (you’ll need to slow it down to see all the details), though. If you really want a capacitor for your high voltage mad science, you might find these more practical. We’ve seen many homemade capacitors for high voltage.

Continue reading “200KV Capacitor Uses Cake Pan and Bowl”

Wimshurst Machines: High Voltage from the Gods

Wimshurst machine demo
Wimshurst machine demo

The Wimshurst machine is one of the oldest and best known electrostatic machines, consisting of its iconic two counter rotating disks and two Leyden jars. Most often you see someone hand cranking it, producing sparks, though we’ve seen it used for much more, including for powering a smoke precipitator for cleaning up smoke and even for powering a laser.

It works through an interesting sequence of events. Most explanations attempt to cram it all into one picture, requiring some major mental gymnastics to visualize. This often means people give up, resigned to assume these work through some mythical mechanics that defy a mortal’s ability to understand.

So instead, let’s do a step-by-step explanation.

Continue reading “Wimshurst Machines: High Voltage from the Gods”

How A Van De Graaff Generator Works

What I particularly like about the Van de Graaff (or VDG) is that it’s a combination of a few discrete scientific principles and some mechanically produced current, making it an interesting study. For example, did you know that its voltage is limited mostly by the diameter and curvature of the dome? That’s why a handheld one is harmless but you want to avoid getting zapped by one with a 15″ diameter dome. What follows is a journey through the workings of this interesting high voltage generator.

Continue reading “How A Van De Graaff Generator Works”

A No-Solder, Scrap-Bin Geiger Counter for $15

Scenario: your little three-hour boat tour runs into a storm, and you’re shipwrecked on a tropic island paradise. You’re pretty sure your new home was once a nuclear test site, but you have no way to check. Only your scrap bin, camera bag, and hot glue gun survived the wreck. Can you put together a Geiger-Müller counter from scrap and save the day?

Probably not, unless your scrap bin is unusually well stocked and contains a surplus Russian SI-3BG miniature Geiger tube, the heart of [GH]’s desert island build. These tubes need around 400 volts across them for incident beta particles or gamma rays to start the ionization avalanche that lets it produce an output pulse. [GH]’s build uses the flash power supply of a disposable 35mm camera to generate the high voltage needed, but you could try using a CCFL inverter, say. The output of the tube tickles the base of a small signal transistor and makes a click in an earbud for every pulse detected.

You’ll no doubt notice the gallons of hot glue, alligator clips, and electrical tape used in the build, apparently in lieu of soldering. While we doubt the long-term robustness of this technique, far be it from us to cast stones – [GH] shows us what you can accomplish even when you find yourself without the most basic of tools.

Continue reading “A No-Solder, Scrap-Bin Geiger Counter for $15”