Homebuilt Ultra Wideband Impulse Radar

wideband impulse radar

[Dr. Gregory Charvat] tipped us off to a video demonstration of his ultra-wideband impulse radar he built using some of his existing radar gear and a few bits purchased off eBay. The homebuilt radar system worked well in his backyard but not much is covered about the build. [Greg] is promising a new book on practical approaches to developing and using small radar devices titled “Small and Short Range Radar Systems“. He told us that the draft is finished and covers radar systems like doppler, linear FM, synthetic aperture, phase array and also UWB impulse radar. It sounds like an interesting book, which can be pre-ordered on Amazon, and will include schematics and bill of materials so you too could build a UWB impulse radar or other small radar systems. Some of the advantages of a UWB impulse radar system are that it produces sub-nanosecond pulses good for tracking moving objects as well as imaging stationery objects. Such radar technology can even image buried objects like metallic and nonmetallic landmines.

Join us after the break for a little background on [Dr. Gregory Charvat] and to watch his demonstration video.

Continue reading “Homebuilt Ultra Wideband Impulse Radar”

Making a 9GHz doppler radar

[Kalle] is currently building an FMCW radar, but as he doesn’t have all the parts finished he decided to build a 9GHZ doppler radar in the mean time. The H-plane horn antennas were made from brass sheet and soldered together. [Kalle] checked the matching between the emitter and the antenna by inserting a directional coupler between the two and measuring the intensity of the reflected signal (approximated return loss). At 9Ghz, the Doppler shift for a 1 meter per second speed is about 30Hz so he connected the radar’s output signal to his soundcard.

A quick explanation of the Doppler effect that a radar uses: if you send an RF signal at a given frequency to a moving target, the reflected signal’s frequency will be shifted. It is commonly heard when a vehicle sounding a siren or horn approaches, passes, and recedes from an observer. The received frequency is higher (compared to the emitted frequency) during the approach, it is identical at the instant of passing by, and it is lower during the recession. Hackaday featured plenty of projects using this effect: a small doppler motion sensor, gesture control using doppler shift, hacking an old radar gun

Hackaday Links: September 29, 2013

hackaday-links-chain

We would be remiss if we didn’t mention that all of SparkFun’s open source hardware is now on Upverter.

Not wanting to tie up an iPad as a mini-gaming cabinet [Hartmut] hacked an Arcadi cabinet to use EUzebox instead.

Time travel happens in the bedroom as well. But only if you have your very own Tardis entrance.  [AlmostUseful] pulled this off with just a bit of word trim and a very nice paint job. [via Reddit]

[Pierre] tricks an iPhone fingerprint scanner by making a replica out of hot glue.

Some of the guys from our parent company were over in Shanghai on business. [Aleksandar Bradic] made time to visit the Shanghai hackerspace while in town and wrote about the experience over on their engineering blog.

[Gregory Charvat] is a busy guy. In fact we’ve got a juicy hack of his saved up that we still need to wrap our minds around before featuring. In the mean time check out the Intern-built coffee can radar that he took over and tested on a  multi-million dollar Spherical Near Field Range.

And finally, everyone loves coffee hacks, right? Here’s what [Manos] calls a Greek style instant coffee machine.

Radar detector integrated with dashboard display screens and steering wheel controls

CAN Bus hacking is all the rage right now. This particular project uses an early development version of an Arduino compatible CAN bus tool to integrate radar detector control into a Mazda dashboard. This image shows the output as the Whistler Pro-3600 radar detector boots up. The self test demonstrates what you would see on the dashboard display if your speed is checked using any of a handful of technologies. But it’s not just the dash display that’s working. The steering wheel controls are also capable of affecting the radar detector so that it can always be hidden from sight.

With auto manufacturers adding more numerous and larger displays to our vehicles it’s refreshing to see someone come up with a hack that makes pushing our own info to those screens possible. The CANBus Triple is an Arduino compatible board which patches into the data bus found in all modern vehicles. To integrate the Whistler for this hack [TheDukeZip] prototyped the interface on a regular Arduino board, then moved it over to the CANBus Triple once he had it working. Check out the video after the break to see the setup in action.

Continue reading “Radar detector integrated with dashboard display screens and steering wheel controls”

Packing a Jeep Wrangler full of hacks

Picking just one image to show off all of the hacks done on this Jeep Wrangler is a tough order. We decided to go with this custom ceiling console as it features the most work done in a confined area.

Give the video walk-around a bit of time before you decide it’s not for you. [Eddie Zarick] spends the first moments touting his “Oakley” branding of the vehicle in decals, emblems, embroidered seats, zipper pulls, and more. But after that you’ll get a look at the pressurized water system we previously saw. Pull open the back gate and there’s a nice cargo cover he built that includes a cubby hole which stores the soft sides when he wants to take the top off. There are several other interesting touches, like the police radar spoofer that he uses to scare the crap out of speeders. Ha!

The ceiling console we mentioned earlier was completely custom-built. It includes a CB, scanner, HAM, and seven-inch Android tablet. There is also a set of push buttons which control the various bells and whistles; well, spotlights and inverter actually. Just add a commode and he’s ready to live out of his car.

Continue reading “Packing a Jeep Wrangler full of hacks”

UC Davis students build coffee can radar project inspired by MIT

student-built-coffee-can-radar

Blinking lights is a lot of fun, but if you’re getting an EE degree the cool stuff becomes a bit more involved. In this case, building your own radar is the thing to do. Here’s a coffee can radar setup being shown off by a group of UC Davis students. Regular readers will recognize the concept as one we looked at in December. The project was inspired by the MIT OpenCourseware project.

One of the cans is being used as a transmitter, the other as the collector. The neat thing about this rig is that the analysis is performed on a PC, with the sound card as the collection device. The video after the break shows off the hardware as well as the results it collected. About a minute and a half into the clip they show a real-time demonstration where a student walks in front of the apparatus while another takes a video of the plot results. As the subject moves away from the receiver the computer graph changes accordingly. The rest of the video covers some operational theory and pcb assembly.

Continue reading “UC Davis students build coffee can radar project inspired by MIT”

Build a $360 synthetic aperture radar with MIT’s OpenCourseware

radar

A few profs from MIT’s Lincoln Lab are giving those poor MIT undergrads something to do over winter break: they’re teaching a three-week course on building a laptop-powered radar system capable of radar ranging, doppler, and synthetic aperture imaging. Interestingly, the radar system that teams will build for the class has a BOM totaling $360, and they’re also putting the entire class online if you’d like to follow along and build your own.

From the lecture notes from the course, the radio system is made out of an off-the-shelf  LNA, oscillator, and  splitter. By connecting two coffee can ‘cantennas’, it’s possible to record a .WAV file from the signal coming from the radar and use MATLAB to turn that audio signal into a doppler radar.

It’s a very ambitious project that goes deep down the rabbit hole of RF and analog design. One of the lecturers made a YouTube demo of the radar in ranging mode; you can check that out after the break.

Continue reading “Build a $360 synthetic aperture radar with MIT’s OpenCourseware”