Hackaday Prize Entry: Reverse GPS

Every time you watch a SpaceX livestream to see a roaring success or fireball on a barge (pick your poison), you probably see a few cubesats go up. Everytime you watch a Soyuz launch that is inexplicably on liveleak.com before anywhere else, you’re seeing a few cubesats go up. There are now hundreds of these 10 cm satellites in orbit, and SatNogs, the winner of the Hackaday Prize a two years ago, gives all these cubesats a global network of ground stations.

There is one significant problem with a global network of satellite tracking ground stations: you need to know the orbit of all these cubesats. This, as with all Low Earth Orbit deployments that do not have thrusters and rarely have attitude control, is a problem. These cubesats are tumbling through the rarefied atmosphere, leading to orbits that are unpredictable over several months.

[hornig] is working on a solution to the problem of tracking hundreds of cubesats that is, simply, reverse GPS. Instead of using multiple satellites to determine a position on Earth, this system is using multiple receiving stations on Earth’s surface to determine the orbit of a satellite.

The hardware for [hornig]’s Distributed Ground Station Network is as simple as you would expect. It’s just an RTL-SDR TV tuner USB dongle, a few antennas, a GPS receiver, and a Raspberry Pi connected to the Internet. This device needs to be simple; unlike SatNogs, where single base station in the middle of nowhere can still receive data from cubesats, this system needs multiple receivers all within the view of a satellite.

The modern system of GPS satellites is one of the greatest technological achievements of all time. Not only did the US need to put highly accurate clocks in orbit, the designers of the system needed to take into account relativistic effects. Doing GPS in reverse – determining the orbit of satellites on the ground – is likewise a very impressive project, and something that is certainly a contender for this year’s Hackaday Prize.

The HackadayPrize2016 is Sponsored by:

GNU Radio for Space (and Aircraft)

GOMX-3 is a CubeSat with several payloads. One of them is a software defined radio configured to read ADS-B signals sent by commercial aircraft. The idea is that a satellite can monitor aircraft over oceans and other places where there no RADAR coverage. ADB-S transmits the aircraft’s ID, its position, altitude, and intent.

The problem is that ADS-B has a short-range (about 80 nautical miles). GOMX-1 proved that the signals can be captured from orbit. GOMX-3 has more capability. The satellite has a helical antenna and an FPGA.

Continue reading “GNU Radio for Space (and Aircraft)”

OzQube-1: A Tiny Australian Satellite

Over the last couple of decades we have become used to the possibility of launching a satellite into orbit no longer being the exclusive preserve of superpowers. Since the first CubeSats were launched over a decade ago a myriad others have followed, and scarcely a week passes without news of another interesting project in this area.

OzQube-1 is just such a satellite, designed for imaging of the Southern Hemisphere, and it’s the brainchild of Australian [Stuart McAndrew]. He’s posted significant details of its design: it’s a PocketQube, at 50mm cubed, an eighth the volume of a CubeSat, and its main instrument is a 2 megapixel camera with a 25mm lens. Images will be transmitted to earth as slow-scan digital video via the 70cm amateur band, the dipole antenna being made from a springy tape measure which will unfurl upon launch. Attitude control is passive, coming from a magnet aligned to ensure the camera will be pointing Earthwards as it passes over the Southern Hemisphere. The project has a little way to go yet, but working prototypes have been completed and it has a Gofundme campaign under way to help raise the money for a launch.

There are plenty of Cubesat and other small satellite builds to be found on the web, here at Hackaday we’ve covered a significant number of them. Many of them are the fruits of well-funded university departments or other entities with deep pockets, but this one comes from a lone builder from Western Australia. We like that, and we wish OzQube-1 every success!

Painting the Sky with Shooting Stars

Japanese company ALE has been working on a new type of sky show, artificial shooting stars, literally creating an artificial meteor shower at a height of 40 to 50 miles (60 to 80km). The show will be visible to anyone within a 125 mile diameter area (200km), meaning that people in New York city and Philadelphia or Los Angeles and San Diego can watch the same show. Aptly named, they’re calling the project “Sky Canvas”.

The plan is to have a satellite, containing around 500 to 1000 source particles, discharge the particles with a specially designed device. As the video below shows, by ejecting the particles in a continuous manner, rather than all at once, they’ll create the equivalent of a meteor shower. The particles will travel around 1/3rd the way around the Earth before entering the atmosphere, creating the shower of shooting stars. Different colors will be possible by using different materials for the particles, something this fireball cannon illustrates.

Continue reading “Painting the Sky with Shooting Stars”

Hackaday Prize Entry: Worldwide Educational Infrastructure

The future of education is STEM, and for the next generation to be fitter, happier, and more productive, classrooms around the world must start teaching programming, computer engineering, science, maths, and electronics to grade school students. In industrialized countries, this isn’t a problem: they have enough money for iPads, Chromebooks, and a fast Internet connection. For developing economies? That problem is a little harder to solve. Children in these countries go to school, but there are no racks of iPads, no computers, and even electricity isn’t a given. To solve this problem, [Eric] has created a portable classroom for his entry into this year’s Hackaday Prize.

Classrooms don’t need much, but the best education will invariably need computers and the Internet. Simply by the virtue of Wikipedia, a connection to the Internet multiplies the efforts of any teacher, and is perhaps the best investment anyone can make in the education of a child. This was the idea behind the One Laptop Per Child project a decade ago, but since then, ARM boards running Linux have become incredibly cheap, and we’re getting to a point where cheap Internet everywhere is a real possibility.

To build this portable classroom, [Eric] is relying on the Raspberry Pi. Yes, there are cheaper options, but the Pi is good enough. A connection to online resources is required, and for that [Eric] is turning to the Outernet. It’s a system that will broadcast educational material down from orbit, using ground stations made from cheap and portable KU band satellite dishes and cheap receivers.

When it comes to educational resources for very rural communities, the options are limited. With [Eric]’s project, the possibilities for educating students on the basics of living in the modern world become much easier, and makes for a great entry into this year’s Hackaday Prize.

Continue reading “Hackaday Prize Entry: Worldwide Educational Infrastructure”

After The Prize: SatNOGS Builds Satellites

When Hackaday announced winners of the 2014 Hackaday Prize, a bunch of hackers from Greece picked up the grand prize of $196,418 for their SatNOGS project – a global network of satellite ground stations for amateur Cubesats.

upsat-integration-test-1The design demonstrated an affordable ground station which can be built at low-cost and linked into a public network to leverage the benefits of satellites, even amateur ones. The social implications of this project were far-reaching. Beyond the SatNOGS network itself, this initiative was a template for building other connected device networks that make shared (and open) data a benefit for all. To further the cause, the SatNOGS team set up the Libre Space Foundation, a not-for-profit foundation with a mission to promote, advance and develop Libre (free and open source) technologies and knowledge for space.

Now, the foundation, in collaboration with the University of Patras, is ready to launch UPSat – a 2U, Open Source Greek Cubesat format satellite as part of the QB50 international thermosphere research mission. The design aims to be maximally DIY, designing most subsystems from scratch. While expensive for the first prototype, they hope that documenting the open source hardware and software will help kickstart an ecosystem for space engineering and technologies. As of now, the satellite is fully built and undergoing testing and integration. In the middle of July, it will be delivered to Nanoracks to be carried on a SpaceX Dragon capsule and then launched from the International Space Station.

Continue reading “After The Prize: SatNOGS Builds Satellites”

Can you hear SamSat-218D?

Students of the Samara State Aerospace University are having trouble getting a signal from their satellite, SamSat-218D. They are now reaching out to the radio amateur community, inviting everybody with sufficiently sensitive UHF VHF band (144 MHz) equipment to help by listening to SamSat-218D. The satellite was entirely built by students and went into space on board of a Soyuz-2 rocket on April 26, 2016. This is their call (translated by Google):

Continue reading “Can you hear SamSat-218D?”