Mobile Planter Chases the Sun

There are two types of people: ones with green thumbs, and ones that kill their cacti  because they forgot to water them for over a year. Sadly, we are of the latter group. We currently have a resilient spider plant that looks like it could use more sun. Now there’s a way for it to catch those rays wherever they may shine, thanks to [Dot Matrix] of Instructables. She made a mobile planter that actively seeks out sunlight.

The planter’s base was made of plywood, topped with fake grass and a watering can to hold the plant. Anything above the planter base can be modified to whatever desired aesthetic. A CRT planter may be too heavy, but there are countless ways to personalize it. [Dot] used an Afinia 3D printer to make various mounts and brackets with ABS plastic. The planter was controlled by an Arduino Micro and used a pair of 0.5W solar panels and Parallax PING))) sensors to decide how it should move from its current position. If the planter would fall or hit an object moving forward, it would reverse and turn on wheels powered by Parallax continuous rotation servos. It would evaluate its new position, repeating the process if it was in danger. Once the planter was safe, it used the solar panels to detect the most sunlight: the sum of the panels determines the area’s brightness while the individual panels’ readings were used to move the planter towards a brighter area. The sun-seeking continued until the sunniest spot was found (defined in the code). Here, the planter remained idle for 10 minutes before restarting the process.

We think [Dot’s] planter is a fun way to keep plants happy and healthy in spite of us. See a video of the planter after the break.

Continue reading “Mobile Planter Chases the Sun”

Scrobby’s on Your Roof, Cleaning Your Solar Panels

Solar panels are a great, sustainable addition to your home’s energy scheme. They’re bound to get dirty, but they can’t withstand harsh chemicals and still be effective. While there are companies that will come out and clean your installation a few times a year, the service is a recurring cost that adds up quickly. With Scrobby, his entry into The Hackaday Prize, [Stefan] sought to build a highly affordable and sustainable solution that, after installation, requires no dangerous trips back up to the roof.

Scrobby is solar-powered and cleans using rainwater. The user can set and alter the cleaning schedule over Bluetooth from their phone. [Stefan]’s prototype was built around a Teensy 3.0, but he will ultimately use custom boards based on the Freescale KL26. In addition to the Bluetooth module, there are six ultrasonic sensors, rain and temperature sensors, and motor-driven spools for tethered movement.

Make the jump to see Scrobby get his prototype bristles installed and show off his abilities in [Stefan]’s demo video. To register for updates, check out Scrobby’s website. If you hurry, you can donate to Scrobby’s Kickstarter campaign. The question is, who will clean Scrobby’s solar panels?


SpaceWrencherThis project is an official entry to The Hackaday Prize that sadly didn’t make the quarterfinal selection. It’s still a great project, and worthy of a Hackaday post on its own.

Continue reading “Scrobby’s on Your Roof, Cleaning Your Solar Panels”

DIY Solar Panels

solar

Reader [unangst] pointed out to us an article in the U.K.’s Daily Mail, where a teenager from Nepal had managed to create a 9v, 18W solar panel using human hair rather than the usual semiconductors (usually crystalline-silicon). The complex silicon in solar panels are what keep the prices out of reach of developing nations, and while there are a number of new technologies that are helping  bring down the cost, [Karki] managed to make his solar panel for only £23 (roughly $38). He also claims that when mass produced the price could drop substantially down to under $10 a panel, which would shatter the $1/watt sweet spot.

The melanin in hair acts as an organic-semiconductor, and while the hair does not have the longevity that silicon panels have (months rather than years), these panels can be made cheaply and serviced with little to no complex knowledge. Using melanin as an organic semiconductor seems to be a newer idea, because information seems hard to come by, but we managed to find a research paper from 2007 that explored the energy absorption attributes of melanin, as well as some good background info for the science types.

Research Paper (Warning: PDF)

So, Hack a Day readers, which one of you is going to make your home-brew solar panels first? Let us know when you do.

Thanks [unangst].