Desktop Siege Weapon: Fireball Cannon

Looking for a harmless way to really step up your office warfare game? Why not build a nitrocellulose desktop cannon!?

On of our favorite science DIY YouTube channels, [NightHawkInLight] shows us how he made this awesome cannon — with interchangeable cannon cartridges! It even has a bit of a steampunk feel to it.

Nitrocellulose, or flash cotton as it’s more commonly known, is used by magicians for fireball magic tricks. Similar to flash paper, it burns up very fast and leaves almost no ash or residue. Creating the fireball effect is as simple as igniting it inside a tube — expanding gases take care of launching it out quite violently.

All the action is in the 3/4″ copper tube cartridges that come complete with home-made glow-plugs made from nichrome wire harvested from a broken hairdryer. These interchangeable cartridges allow [NightHawkInLight] to load up ahead of time and fire them off in quick succession.

Continue reading “Desktop Siege Weapon: Fireball Cannon”

World Create Day: Hackaday Meetups Reach Europe And Africa

world-create-day-europe-africaWe are now just three days away from Hackaday World Create Day. On Saturday, April 23rd, the Hackaday community around the world will come together in real life to have fun, share their stories, and to do a little bit of engineering.

A few weeks ago, we put out the call for local meetup organizers and were overwhelmed by the response. The World Create Day events in Europe and Africa span pretty much from pole to pole with meetups in Salangen and Cape Town.

If you are near any of the events on the map, please join in the camaraderie on Saturday If you don’t see a marker near you, it’s not too late, you can still host your own meetup. Follow these easy steps to get your town on the map!

What can you expect from World Create Day? At its simplest, gather together and talk about solving a technology problem facing humanity. This can be submitted as your Challenge 1 entry for the 2016 Hackaday Prize. But many organizers have more planned. We’ve heard from groups who are hosting hardware show-and-tell, others have lined of speakers or workshops, and we always suggest hosting lightning talks where anyone at the meetup can speak for around two minutes.

Hackaday is made up of doers. It’s time we all got together and celebrated what that means. Don’t miss out this Saturday!

The HackadayPrize2016 is Sponsored by:

Hackaday Reviews: Flir One Android

The Flir One thermal camera caused quite a stir when it was launched back in 2014. Both the Flir One and its prime competitor Seek Thermal represented the first “cheap” thermal cameras available to the public. At the heart of the Flir One was the Lepton module, which could be purchased directly from Flir Systems, but only in quantity. [Mike Harrison] jumped on board early, cutting into his Flir One and reverse engineering the Lepton module within, including the SPI data required to talk to it. He even managed to create the world’s smallest thermal imager using a the TFT screen from an Ipod Nano.

flircamA few things have changed since then. You can buy Lepton modules in single quantity at DigiKey now. Flir also introduced a second generation of the Flir One. This device contains an updated version of the Lepton. The new version has a resolution of 160 x 120 pixels, doubled from the original module. There are two flavors: The iOS version with a lightning port, and an Android version with a micro USB connector. I’m an Android user myself, so this review focuses on the Android edition.

The module itself is smaller than I expected. It comes with a snap-on case and a lanyard. While you’ll look a bit like a dork wearing the lanyard, it does come in handy to keep the imager from getting lost or dropped. The Flir One has an internal battery, which of course needs to be topped off before it can be used. Mine charged up in about half an hour.

Continue reading “Hackaday Reviews: Flir One Android”

Supplyframe Design Lab Residency Applications Now Open

The Supplyframe Design Lab in Pasadena, CA is opening soon. This space is dedicated to making great ideas reality. It is packed with state of the art tools, with plenty of room for classes and collaboration.

Professional level tools and an available workshop are just one piece of the puzzle. To be truly successful, great people need to bring the space to life with inspiring builds and forward thinking adventures. If you want to be part of this community, and have been contemplating an idea for your next product or project, consider applying for a funded residency.

Art, Product, and Technology projects will all be considered. Those selected will be funded up to $2,000 per month. We want to see ambitious projects realized at the Design Lab so don’t be afraid to think big. To help in curating the best projects to fund we’d like to see some of your previous work. If you haven’t already, please share some of your builds on Hackaday.io. The first round of funded projects can be under way as early as June 1st.

[Sprite_tm] Gives Near Death VFD A Better Second Life

[Sprite_tm] picked up some used VFD displays for cheap, and wanted to make his own custom temperature and air-quality display. He did that, of course, but turned it into a colossal experiment in re-design to boot. What started out as a $6 used VFD becomes priceless with the addition of hours of high-powered hacking mojo.

You see, the phosphor screen had burnt-in spots where the old display was left static for too long. A normal person would either live with it or buy new displays. [Sprite_tm] ripped off the old display driver and drives the row and column shift registers using the DMA module on a Raspberry Pi2, coding up his own fast PWM/BCM hybrid scheme that can do greyscale.

He mapped out the individual pixels using a camera and post processing in The Gimp to establish the degradation of burnt-in pixels. He then re-wrote a previous custom driver project to compensate for the pixels’ inherent brightness in firmware. After all that work, he wrapped the whole thing up in a nice wooden frame.

There’s a lot to read, so just go hit up his website. High points include the shift-register-based driver transplant, the bit-angle modulation that was needed to get the necessary bit-depth for the grayscale, and the PHP script that does the photograph-based brightness correction.

Picking a favorite [Sprite_tm] hack is like picking a favorite ice-cream flavor: they’re all good. But his investigation into hard-drive controller chips still makes our head spin just a little bit. If you missed his talks about the Tamagotchi Singularity from the Hackaday SuperCon make sure you drop what you’re doing and watch it now.

Are Powdered Metal Fuels Just A Flash In The Pan?

It’s no secret that fossil fuels are quickly becoming extinct. As technology charges ever forward, they are disappearing faster and faster. Many of our current dependencies on fossil fuels are associated with high-energy applications like transportation. Since it’s unlikely that global transportation will ever be in decline for any reason other than fuel shortage itself, it’s imperative that we find something that can replicate the high energy density of fossil fuels. Either that, or go back to the drawing board and change the entire scope of global transportation.

Energy, especially solar and wind, cannot be created all over the world. Traditionally, energy is created in situ and shipped to other places that need it. The proposed solutions for zero-carbon energy carriers—batteries and hydrogen—all have their weaknesses. Batteries are a fairly safe option, but their energy density is pretty poor. Hydrogen’s energy density is higher, but its flammability makes it dangerously volatile to store and transport.

Recently, a group of researchers at McGill University in Canada released a paper exploring the use of metal powders as our zero-carbon fuel of the future. Although metal powders could potentially be used as primary energy sources, the transitory solution they propose is to use them as secondary sources powered by wind and solar primaries.

Continue reading “Are Powdered Metal Fuels Just A Flash In The Pan?”

Split-flap Train Display Uses Punch Cards; Serviced With Station Ingenuity

short but highly detailed documentary by [Krzysztof Tyszecki] explores the split-flap display system in place at the Łódź Kaliska train station in Poland as well as the efforts needed by the staff to keep it running and useful to this day. Split-flap displays might be old technology, but many are still in use throughout the world. But even by those standards, the unit at Łódź Kaliska is a relic you wouldn’t expect to see outside a museum. “I doubt you’ll find an original anywhere else,” says a staff member. It requires constant upkeep to remain operational, and meeting the changing demands of a modern station within the limitations of the original system takes some cleverness. “In general the failure rate of the device is terrible,” he adds.

Operator console for Czech PragotronThe system runs on punch cards. You can’t buy them anymore, so a local printer makes them – several hundred are needed every time there is a schedule change. The punching pliers (which also can no longer be purchased) get so worn out they replace the pins with custom-made ones from a local locksmith. The moving parts of the card reader have split-pins which need to be replaced every week or two – the stress of repeated movement simply wears them away. There’s nothing to do but replace them regularly. The assembly needs regular cleaning since dust accumulates on the cards and gets into the whole assembly. The list goes on… and so does the station.

There is no computation in the modern sense – it’s an electromechanical signing system managed and updated by human operators. It has more in common with a crossbar switch based telephone exchange than anything else. The punch cards are just a means of quickly, accurately, and repeatedly setting the displays to known states.

The short documentary goes into a lot of detail about every part of the system. The cards themselves are described in detail (1:07), as is the operator’s routine (2:27). We even see the back end controller (9:41), as well as see a split-flap module taken apart and tested (14:33) with an old tester the staffer isn’t sure will even work – but as with everything else we see, of course it does.

Split-flap displays are fascinating pieces of technology. We have even seen people build their own split-flap displays from scratch!

Continue reading “Split-flap Train Display Uses Punch Cards; Serviced With Station Ingenuity”