Doomed Thermostat

It is amazing how the game Doom has been ported to so many things. Enter one more port, where the hardware in question is a Honeywell Prestige thermostat.

In his video, [cz7asm] shows us the game running quite nicely on the 480 x 272 LCD with an NES controller plugged into the USB port originally intended for software updates. The thermostat runs on a STM32F429 which is an ARM9 processor that has the juice to pull it off. The Doom engine being used is based on Chocolate Doom, an open source port of the game, and the binaries can be downloaded for Windows and Mac. The source code is also available as a download for your tinkering pleasure. This project by [cz7asm]  is extended from a code on GitHub by [floppes] that was meant for the STM32F429IDISCOVERY evaluation board.

The author shares his code for the STM32F4 on Dropbox as a zip and in order to compile it, the Atmel BSP for GNU GCC is used. The video below demonstrates the hack in action and, though there is no sound yet, the satisfaction that comes from such modifications is its own reward.

What else can you run Doom on? How about a calculator or maybe the Intel Edison or even an ATM machine! If there is a processor with enough muscle power, hackers will find a way to run Doom on it. So have you seen any alien computers lately that you think can be hacked? Continue reading “Doomed Thermostat”

An Education On SoC Using Verilog

[Bruce Land] is one of those rare individuals who has his own Hackaday tag. He and his students at Cornell have produced many projects over the years that have appeared on these pages, lately with FPGA-related projects. If you only know [Land] from projects, you are missing out. He posts lectures from many of his classes and recently added a series of new lectures about developing with a DE1 System on Chip (SoC) using an Altera Cyclone FPGA using Verilog. You can catch the ten lectures on YouTube.

The class material is different for 2017, so the content is fresh and relevant. The DE1-SOC has a dual ARM processor and boots Linux from an SD card. There are several labs and quite a bit of background material. The first lab involves driving a VGA monitor. Another is a hardware solver for ordinary differential equations.

Continue reading “An Education On SoC Using Verilog”

Zombie Badges Take Over Security Con

We can’t get enough of hacker-con badges. BSides Cape Town, held Last December, featured an IR-equipped badge that immersed attendees in a game while they chatted.

A group led by [AndrewMohawk] and [ElasticNinja] designed the badge around an ESP8266 and 128×64 OLED display, with eight buttons, an IR receiver and transmitter, five “level” LEDs, an RGB LED, and a 600 mAh LiPo that charged over USB.

The hardware was designed specifically to play an organic game so that the organizers could watch the interaction between the badges in real time. Each badge was randomly sorted into a faction, either red, blue, or green—identifiable by an RGB LED glowing on the badge. There was also a series of five LEDs signifying your level in the game. When two or more badges got close to each other, enough for the IR to link, the badge with the lowest level was converted to the faction of the winner.

Of course, the badge displayed attendees’ handles and contained a list of convention programming. It also presented attendees with a series of challenges, which could be unlocked to play Pong or Rock/Paper/Scissors/Lizard/Spock, scan for wireless networks, and run animations.

Continue reading “Zombie Badges Take Over Security Con”

Blacksmith’s Junkyard Power Hammer Packs A Punch

Any way you look at it, blacksmithing is a punishing trade. Heavy tools, a red-hot forge, flying sparks, and searing metal all exact a toll on the smith’s body unless precautions are taken. After proper safety equipment and good training, a blacksmith may want to invest is power hammer to replace at least some of the heavy hammer work needed to shape hot metal.

Power hammers aren’t cheap, though, which is why [70kirkster] built one from an old engine block. You’ve got to admire the junkyard feel of this thing; it’s almost nothing but scrap. The engine block is a straight-6 from an old Ford pickup stripped of everything but the crankshaft and one piston. An electric motor spins the crankshaft and moves the hammer against the anvil through connecting rods and a trip arm fashioned from a trailer leaf spring. Everything looks super solid and the hammer hits hard; the videos below tell the tale of the build and show the hammer in action. Not bad for $100 out-of-pocket.

Blacksmithing is one of those dark arts that really deserves to have more adherents. The barriers to entry can be high, but the rewards are great. Looking to get started on the cheap? Then check out [Bil Herd]’s guide to hacking together a backyard smithy.

Continue reading “Blacksmith’s Junkyard Power Hammer Packs A Punch”

Hackaday Prize Entry: WiFi EPaper

[Frank Buss] designed an electronic version of a sticky note: a WiFi enabled, solar-powered ePaper, with magnets embedded in the casing. It’s based on the new ESP32, and the idea is that you can update it via your smart-phone or over the internet via a cloud app to show any message you want. Being an ePaper display, the power consumption is greatly reduced, at least if you are cautious using the ESP32.

The final version plans to poll a server once per hour to get a new image to display. Depending on the final size and battery constraints, our guess is that it could probably poll often. Of course, that depends on the available charging light, which is usually reduced when you are inside the house. The project also has 3 buttons to provide user input, which can be customized for a wide array of actions, as [Frank Buss] notes:

For example install it on the fridge of your grandma, who might not be very proficient in using modern internet connected devices. Then you can send her birthday wishes, or remind her of schedules. And the buttons could be used as a feedback channel, like confirming a date. Or when installed at a public place, it can act as a bulletin board. Or it can be used for a modern form of internet connected graffiti or other art projects. The possibilities are infinite.

This project immediately reminds us of the recent SHA2017 badge we covered some days ago, with a bigger display and solar panel or the e-ink wifi display project from last year.

The latest version is being tested with a black/white/red ePaper display, as we can see in the video:

Continue reading “Hackaday Prize Entry: WiFi EPaper”

Hardware Heroes: Tim Hunkin

If you were an engineering student around the end of the 1980s or the start of the 1990s, your destiny most likely lay in writing 8051 firmware for process controllers or becoming a small cog in a graduate training scheme at a large manufacturer. It was set out for you as a limited set of horizons by the university careers office, ready for you to discover as only a partial truth after graduation.

But the chances are that if you were a British engineering student around that time you didn’t fancy any of that stuff. Instead you harboured a secret dream to be [Tim Hunkin]’s apprentice. Of course, if you aren’t a Brit, and maybe you are from a different generation, you’ll have responded quizzically to that name. [Tim Hunkin]? Who?

[Tim Hunkin] is a British engineer, animator, artist and cartoonist who has produced a long series of very recognisable mechanical devices for public display, including clocks, arcade machines, public spectacles, exhibits and collecting boxes for museums, and much more. He came to my attention as an impressionable young engineer with his late 1980s to early 1990s British TV series  The Secret Life Of Machines, in which he took everyday household and office machines and appliances and explained and deconstructed them in an accessible manner for the public.

Continue reading “Hardware Heroes: Tim Hunkin”

Evezor Robotic Arm Engraves 400 Coasters

When you’re running a Kickstarter for a robotic arm, you had better be ready to prove how repeatable and accurate it is. [Andrew] has done just that by laser engraving 400 wooden coasters with Evezor, his SCARA arm that runs on a Raspberry Pi computer with stepper control handled by a Smoothieboard.

Evezor is quite an amazing project: a general purpose arm which can do everything from routing circuit boards to welding given the right end-effectors. If this sounds familiar, that’s because [Andrew] gave a talk about Evezor at Hackaday’s Unconference in Chicago,

One of the rewards for the Evezor Kickstarter is a simple wooden coaster. [Anderw] cut each of the wooden squares out using a table saw. He then made stacks and set to programming Evezor. The 400 coasters were each picked up and dropped into a fixture. Evezor then used a small diode laser to engrave its own logo along with an individual number. The engraved coasters were then stacked in a neat output pile.

After the programming and setup were complete, [Andrew] hit go and left the building. He did keep an eye on Evezor though. A baby monitor captured the action in low resolution. Two DSLR cameras also snapped photos of each coaster being engraved. The resulting time-lapse video can be found after the break.

Continue reading “Evezor Robotic Arm Engraves 400 Coasters”