Ultrasonic spirit writing

Ultrasonic Array Powers This Halloween Spirit Writer

The spooky season is upon us, and with it the race to come up with the geekiest way to scare the kids. Motion-activated jump-scare setups are always a crowd-pleaser, but kind of a cheap thrill in our opinion. So if you’re looking for something different for your Halloween scare-floor, you might consider “spirit writing” with ultrasound.

The idea that [Dan Beaven] has here is a variation on the ultrasonic levitation projects we’ve seen so many of over the last couple of years. While watching bits of styrofoam suspended in midair by the standing waves generated by carefully phased arrays of ultrasonic transducers is cool, [Dan] looks set to take the concept to the next level. Very much still a prototype, the setup has a 256-transducer matrix suspended above a dark surface. Baking powder is sprinkled over the writing surface to stand in for dust, which is easily disturbed by the sound waves reflecting off the hard surface. The array can be controlled to make it look like an unseen hand is tracing out a design in the dust, and the effect is pretty convincing. We’d have chosen “REDRUM” rather than a pentagram, but different strokes.

[Dan] obviously has a long way to go before this is ready for the big night, but the proof-of-concept is sound. While we wait for the finished product, we’ll just file this away as a technique that might have other applications. SMD components are pretty small and light, after all — perhaps an ultrasonic pick-and-place? In which case, sonic tweezers might be just the thing.

Continue reading “Ultrasonic Array Powers This Halloween Spirit Writer”

Fukushima Daiichi at night

A Tritium Story: How Afraid Should You Be Of Hydrogen’s Big Brother?

Despite being present in everything that contains water, tritium is not an isotope that many people were that familiar with outside of select (geeky) channels, such as DEF CON with a tritium-containing badge, the always excellent NurdRage’s assembly of a tritium-based atomic battery, or the creation of a tritium-phosphor-based glow-in-the-dark tesseract cube.

Tritium is a hydrogen isotope that shares a lot of characteristics with its two siblings: 1H (protium) and 2H (deuterium), with the main distinction being that tritium (3H) is not a stable isotope, with a half-life of ~12.32 years that sees it decay into 3He. Most naturally occurring tritium on Earth originates from interactions between fast neutrons (>4.0 MeV) from cosmic radiation and atmospheric nitrogen.

Recently tritium has become a politically hot topic on account of the announced release of treated water at the Japanese Fukushima Daiichi nuclear plant. This has raised for many the question of just how much tritium is ‘too much’ and what we’re likely to notice from this treated — but still tritium-containing water — being released into the ocean.

Continue reading “A Tritium Story: How Afraid Should You Be Of Hydrogen’s Big Brother?”

Ford Maverick Welcomes DIY Spirit

We’ve featured a lot of car hacks on these pages, most would void the warranty and none of it with explicit factory support. Against that background, Ford’s upcoming Maverick is unique: a major manufacturer has invited owners to unleash their do-it-yourself spirit. It is one of several aspects that led [Jason Torchinsky] of Jalopnik to proclaim The 2022 Ford Maverick Is An Honest, Cheap, Multitool Of A Vehicle And I’m All For It.

There are two primary parts to Ford’s DIY invitation. Inside the cabin are several locations for a dovetail mount called “Ford Integrated Tether System” (FITS). Naturally Ford will be selling their own FITS accessories, but they also expect people to create and 3D-print designs addressing needs unmet by factory kits. CAD files for FITS dimensions are promised, but any maker experienced with a caliper should have little trouble.

Another part of Ford’s DIY invitation is in the cargo area, whose sides were stamped with slots for lumber beams supporting projects like a ~$45 bike rack. There are also threaded bolt holes already in the bed, no drilling or tapping into sheet metal necessary. Behind a few small plastic doors are wires to supply 12 V DC power without the risk of splicing into factory harnesses.

There will always be wild car hacks like turning a sedan into a pickup truck. But it’s great to lower the barrier of entry for milder hacks with these small and very welcome features. QR codes on a sticker takes us to Ford’s collection of video instructions to get things started. Naturally if this idea takes off other people will post many more on their own YouTube channels. We like where Ford wants to go with this, and we would love to see such DIY-friendliness spread across the auto industry. A few Ford videos explaining design intent in this area after the break.

[Title image: Ford Motor Company]

Continue reading “Ford Maverick Welcomes DIY Spirit”

Wearable colour eink display in watch format showing additional internal details

Bendable Colour EPaper Display Has Touch Input Too

The Interactive Media Lab at Dresden Technical University has been busy working on ideas for user interfaces with wearable electronics, and presents a nice project, that any of us could reproduce, to create your very own wearable colour epaper display device. They even figured out a tidy way to add touch input as well. By sticking three linear resistive touch strips, which are effectively touch potentiometers, to a backing sheet and placing the latter directly behind the Plastic Logic Legio 2.1″ flexible electrophoretic display (EPD), a rudimentary touch interface was created. It does look like it needs a fair bit of force to be applied to the display, to be detectable at the touch strips, but it should be able to take it.

The rest of the hardware is standard fayre, using an off-the-shelf board to drive the EPD, and an Adafruit Feather nRF52840 Sense board for the application and Bluetooth functionality. The casing is 3D printed (naturally) and everything can be built from items many of us have lying around. The video below shows a few possible applications, including interestingly using the display as part of the strap for another wearable. Here is also is a report on adding interactive displays to smart watches. After all, you can’t have too many displays.

Many wearables projects can be found in the HaD archives, including this dubious wearable scope, a method for weaving OLED fibres into garments. Finally, for a good introduction to wearable DIY tech, you could do worse than this Supercon talk from Sophy Wong.

Continue reading “Bendable Colour EPaper Display Has Touch Input Too”

Sinclair Pocket TV Teardown

A pocket-sized TV is not a big deal today. But in 1983, cramming a CRT into your pocket was quite a feat. Clive Sinclair’s TV80 or FTV1 did it with a very unique CRT and [Dubious Engineering] has a teardown video to show us how it was done.

A conventional CRT has an electron gun behind the screen which is why monitors that use them are typically pretty thick. The TV80’s tube has the electron gun to the side to save space. It also uses a fresnel lens to enlarge the tiny image.

Continue reading “Sinclair Pocket TV Teardown”

IBM Attempts An Uncrewed Atlantic Crossing (Again)

IBM and a non-profit company, ProMare, failed to send their 49-foot Mayflower autonomous ship across the Atlantic back in June. Now they are almost ready to try again. The Mayflower will recreate the path of its more famous namesake.

The total voyage is set to take a month, but the last attempt developed mechanical problems after three days. Now they are running more sea trials closer to shore before attempting another crossing in 2022. Continue reading “IBM Attempts An Uncrewed Atlantic Crossing (Again)”

An automatic color mixer, dispensing a mixture of red and yellow

The M5Stack Color Maker Can Mix Paint To Match Your Subject

We’ve all learned in primary school art classes that blue and yellow make green, and that adding a little black to a color will make it darker. But what if you want to paint with a color that exactly matches something else? Usually, that requires a lot of trial and error (and paint), and the end result may not look the way you wanted after all.

To help aspiring artists, [Airpocket] made the M5Stack Color Maker. This is a device that reads out a color sensor and automatically mixes watercolor paint in the right proportions to match what it sensed. It dispenses drops of cyan, magenta, yellow and black paint (CMYK) into a small bowl, from which you can then apply it with a paintbrush.

An automatic color mixer, with labels explaining each partThe color sensor is similar in use to the color picker (or “dropper”) tool present in most graphics programs: simply point it at something that has the right color, and it will generate the correct values for you. It is based on an AMS TCS34725 color sensor, which is housed in a 3D-printed shell that also includes a white LED. The sensor outputs Red, Green and Blue (RGB) values, which are converted into the corresponding CMYK values by a Raspberry Pi Pico. A touch-sensitive screen allows the user to make adjustments before activating the paint pumps.

Those pumps are tube pumps, which have been specifically designed (and also 3D printed) to allow them to move tiny amounts of liquid while minimizing the pulsing motion typical with this type of pump. They are driven by stepper motors which are controlled by the Pi Pico.

Although many artists might prefer to mix their colors manually, the M5Stack makes mixing that exact shade of blue just that little bit easier. We can also imagine it might help those who are color blind and unable to clearly tell different colors apart. We’ve seen simple paint mixers for larger quantities of paint, and even robots that can do the actual painting for you. If you need a refresher on color theory, we’ve got you covered too.
Continue reading “The M5Stack Color Maker Can Mix Paint To Match Your Subject”