Listening To A Flashlight — Lunar Flashlight

If you’ve been looking for a practical example of using GNU Radio, you should check out [Daniel Estévez’s] work on decoding telemetry captured from the Lunar Flashlight cubesat. The cubesat is having some trouble, but the data in question was a recording from the day after launch. We aren’t sure what it would take to eavesdrop on it live, but the 3-minute recording is from a 20-meter antenna at 8.4 GHz.

The flowgraph for GNU Radio isn’t as bad as you might think, thanks to some judicious reuse of blocks from other projects to do some of the decoding. The modulation is PCM/PM/bi-phase-L. Nominally, the speed is supposed to be 48,000 baud, but [Daniel] measured 48,077.

Continue reading “Listening To A Flashlight — Lunar Flashlight”

Smart Bike Suspension Tunes Your Ride On The Fly

Riding a bike is a pretty simple affair, but like with many things, technology marches on and adds complications. Where once all you had to worry about was pumping the cranks and shifting the gears, now a lot of bikes have front suspensions that need to be adjusted for different riding conditions. Great for efficiency and ride comfort, but a little tough to accomplish while you’re underway.

Luckily, there’s a solution to that, in the form of this active suspension system by [Jallson S]. The active bit is a servo, which is attached to the adjustment valve on the top of the front fork of the bike. The servo moves the valve between fully locked, for smooth surfaces, and wide open, for rough terrain. There’s also a stop in between, which partially softens the suspension for moderate terrain. The 9-gram hobby servo rotates the valve with the help of a 3D printed gear train.

But that’s not all. Rather than just letting the rider control the ride stiffness from a handlebar-mounted switch, [Jallson S] added a little intelligence into the mix. Ride data from the accelerometer on an Arduino Nano 33 BLE Sense was captured on a smartphone via Arduino Science Journal. The data was processed through Edge Impulse Studio to create models for five different ride surfaces and rider styles. This allows the stiffness to be optimized for current ride conditions — check it out in action in the video below.

[Jallson S] is quick to point out that this is a prototype, and that niceties like weatherproofing still have to be addressed. But it seems like a solid start — now let’s see it teamed up with an Arduino shifter.

Continue reading “Smart Bike Suspension Tunes Your Ride On The Fly”

Smiling ad family with 3D printer

Ask Hackaday: Do Kids Need 3D Printers?

Mattel holds a fond place in most people’s hearts as they made many of the toys we played with as kids. You might remember the Thingmaker, which was essentially an Easy Bake Oven with some goop and molds that let you make rubbery creatures. But back in 2016, Mattel had an aborted attempt to bring 3D printing to kids under the Thingmaker label. You can see a promo video of the device below. You might not have seen one in real life, though. The product was delayed and eventually canceled. Even so, we frequently see press releases for “kids printers” and we’ve been wondering, should this be a thing? Continue reading “Ask Hackaday: Do Kids Need 3D Printers?”

Vintage Electronics Hack Chat

Join us on Wednesday, January 25 at noon Pacific for the Vintage Electronics Hack Chat with Keri Szafir!

The world of the hardware hacker is filled with smells. The forbidden but enticing waft of solder smoke, the acrid bite of the Magic Blue Smoke, the heady aroma of freshly greased gears, the unmistakable smell of hot metal — they all tell a story, sometimes good, sometimes bad.

But the smell inside a piece of vintage electronics? Now that’s a complicated story indeed. It might be the wax of the old capacitors, the resinous scent of well-baked resistors, the enameled wire in transformers, or just the smell of the hot glass of the vacuum tubes. Whatever it is, once you smell it, you’ll never forget it

join-hack-chatFor some of us, that first whiff starts a lifelong passion for vintage gear. Keri Szafir knows quite well what it’s like to be bitten by the vintage bug, so much so that she goes by “The Vacuum Tube Witch” over on her YouTube channel. Her projects include repairs and restorations of vintage amps and radios, and even new builds with old tubes. She’ll stop by the Hack Chat to talk about vintage electronics, tube hoarding collecting, and even her new interest in retro display technologies. Where there’s a tube, there’s a way!

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, January 25 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

A white clock with a house profile sits on a variegated grey background. A yellow skein of yarn sits on the top left side of the clock feeding into a circular loom that takes up the bulk of the center. A yellow scarf extends out the back of the clock and out of frame below the image.

Knitting Clock Makes You A Scarf For Next Year

Time got a little wibbly wobbly during these pandemic years. Perhaps we would’ve had a more tangible connection to it if [Siren Elise Wilhelmsen]’s knitting clock had been in our living rooms.

Over the course of a year, [Wilhelmsen]’s clock can stitch a two meter scarf by performing a stitch every half hour. She says, “Time is an ever forward-moving force and I wanted to make a clock based on times true nature, more than the numbers we have attached to it.” Making the invisible visible isn’t always an easy feat, but seeing a clock grow a scarf is reminiscent of cartoon characters growing a beard to organically communicate the passage of time.

We’d love some more details about the knitting machine itself, but that seems like it wasn’t the focus of the project. A very small run of these along with a couple prototypes were built, with a knitting grandfather clock now occupying the lobby of The Thief hotel in Oslo.

If you’re looking for more knitting machines, checkout this Knitting Machine Rebuild or Knitting 3D Models Into Stuffies.

Continue reading “Knitting Clock Makes You A Scarf For Next Year”

NASA Lunar Probe Finds Out It’s Not Easy Being Green

If you’re a space fan, these are very exciting days. There’s so much happening overhead that sometimes it can be difficult to keep up with the latest news. Artemis I just got back from the Moon, the International Space Station crew are dealing with a busted Soyuz, SpaceX is making incredible progress with their Starship architecture, CubeSats are being flung all over the solar system, and it seems like every month a new company is unveiling their own commercially-developed launch vehicle.

Lunar Flashlight

So with everything going on, we wouldn’t be surprised if you haven’t heard about NASA’s Lunar Flashlight mission. The briefcase-sized spacecraft was launched aboard a special “rideshare” flight of SpaceX’s Falcon 9 rocket back on December 11th — tagging along with two other craft heading to our nearest celestial neighbor, the Japanese Hakuto-R lander, and a small rover developed by the United Arab Emirates. There was a time when a launch like that would have been big news, but being that it was only the second of seven launches that SpaceX performed in December alone, it didn’t make many headlines.

But recently, that’s started to change. There’s a growing buzz around Lunar Flashlight, though unfortunately, not for the reasons we’d usually hope. It seems the diminutive explorer has run into some trouble with its cutting-edge “green” propellant system, and unless the issue can be resolved soon, the promising mission could come to an end before it even had a chance to start.

Continue reading “NASA Lunar Probe Finds Out It’s Not Easy Being Green”

Inside Globus, A Soviet-Era Analog Space Computer

Whenever [Ken Shirriff] posts something, it ends up being a fascinating read. Usually it’s a piece of computer history, decapped and laid bare under his microscope where it undergoes reverse engineering and analysis to a degree that should be hard to follow, but he still somehow manages to make it understandable. And the same goes for this incredible Soviet analog flight computer, even though there’s barely any silicon inside.

The artifact in question was officially designated the “Индикатор Навигационный Космический,” which roughly translates to “space navigation indicator.” It mercifully earned the nickname “Globus” at some point, understandable given the prominent mechanized globe the device features. Globus wasn’t actually linked to any kind of inertial navigation inputs, but rather was intended to provide cosmonauts with a visual indication of where their spacecraft was relative to the surface of the Earth. As such it depended on inputs from the cosmonauts, like an initial position and orbital altitude. From there, a complicated and absolutely gorgeous gear train featuring multiple differential gears advanced the globe, showing where the spacecraft currently was.

Those of you hoping for a complete teardown will be disappointed; the device, which bears evidence of coming from the time of the Apollo-Soyuz collaboration in 1975, is far too precious to be taken to bits, and certainly looks like it would put up a fight trying to get it back together. But [Ken] still manages to go into great depth, and reveals many of its secrets. Cool features include the geopolitically fixed orbital inclination; the ability to predict a landing point from a deorbit burn, also tinged with Cold War considerations; and the instrument’s limitations, like only supporting circular orbits, which prompted cosmonauts to call for its removal. But versions of Globus nonetheless appeared in pretty much everything the Soviets flew from 1961 to 2002. Talk about staying power!

Sure, the “glass cockpit” of modern space vehicles is more serviceable, but just for aesthetics alone, we think every crewed spacecraft should sport something like Globus. [Ken] did a great job reverse-engineering this, and we really appreciate the tour. And from the sound of it, [Curious Marc] had a hand in the effort, so maybe we’ll get a video too. Fingers crossed.

Thanks to [saintaardvark] for the tip.