Amiga Programming In 2025 With AmiBlitz

Having owned an Amiga microcomputer is apparently a little bit like having shaken hands with Shoggoth: no one can escape unchanged from the experience. Thirty-two years on, [Neil] at The Retro Collective remains haunted by the memories — specifically, the memory of BlitzBasic 2, an Amiga-specific programming language he never found the time to use. What better time to make a game for the Amiga than the year 2025 of the common era?

[Neil] takes us on a long journey, with more than a little reminiscing along the way. BlitzBasic may not have been the main programming language for the Amiga, but it was by no means the least, with a good pedigree that included the best-selling 1993 game Skidmarks. Obviously BlitzBasic was not a slow, interpreted language as one might think hearing “BASIC”. Not only is it a compiled language, it was fast enough to be billed as the next best thing to C for the Amiga, according to [Neil].

[Neil] wasn’t the only one whose dreams have been haunted by the rugose touch of the Amiga and its scquomose BlitzBasic language– you’ll find a version on GitHub called AmiBlitz3 that is maintained by [Sven] aka [honitas] to this day, complete with an improved IDE. The video includes a history lesson on the open-source AmiBlitz, and enough information to get you started.

For the vibe-coders amongst you, [Neil] has an excellent tip that you can use LLMs like ChatGPT to help you learn niche languages like this not by asking for code (which isn’t likely to give you anything useful, unless you’ve given it special training) but by requesting techniques and psudocode you can then implement to make your game. The LLM also proved a useful assistent for [Neil]’s excel-based pixel art workflow.

If you’re wondering why bother, well, why not? As [Neil] says, writing Amiga games is his version of a crossword puzzle. It may also be the only way to keep the dreams at bay. Others have taken to writing new operating systems  or reproducing PCBs to keep vintage Amiga hardware alive. If some gather under the light of the full moon to chant “Ia! Ia! Commodore f’thagan”– well, perhaps we can thank them for Commodore for rising from the sunless depths of bankruptcy once again.

Continue reading “Amiga Programming In 2025 With AmiBlitz”

Hackaday Links Column Banner

Hackaday Links: August 10, 2025

We lost a true legend this week with the passing of NASA astronaut Jim Lovell at the ripe old age of 97. Lovell commanded the ill-fated Apollo 13 mission back in 1970, and along with crewmates Jack Swigert and Fred Haise — along with just about every person working at or for NASA — he managed to guide the mortally wounded Odyssey command module safely back home. While he’s rightly remembered for the heroics on 13, it was far from his first space rodeo. Lovell already had two Gemini missions under his belt before Apollo came along, including the grueling Gemini 7, where he and Frank Borman undertook the first long-duration space mission, proving that two men stuffed into a Volkswagen-sized cockpit could avoid killing each other for at least two weeks.

Continue reading “Hackaday Links: August 10, 2025”

2025 One Hertz Challenge: Using Industrial Relays To Make A Flasher

These days, if you want to flash some LEDs, you’d probably grab a microcontroller. Maybe you’d go a little more old-school, and grab a 555. However, [Jacob] is even more hardcore than that, as evidenced by this chunky electromechanical flasher build.

[Jacob] goes into great detail on his ancillary write-up, describing how the simple building blocks used by industrial control engineers can be used to make a flasher circuit that cycles once per second. Basically, two relays are paired with two 0.5-second delay timers. The two relays tag each other on and off on delay as their timers start and expire, with the lamp turned on and off in turn.

We’ve had lots of other great entries to our One Hertz Challenge, too — from clocks to not-clocks. There’s still time to get an entry in — the deadline for submission is Tuesday, August 19 at 9:00AM Pacific time. Good luck out there!

A pink sine wave is seen against the black background of an oscilloscope display.

Coping With Disappearing Capacitance In A Buck Converter

Designing a circuit is a lot easier on paper, where components have well-defined values, or lacking that, at least well-defined tolerances. Unfortunately, even keeping percentage tolerances in mind isn’t always enough to make sure that circuits work correctly in the real world, as [Tahmid] demonstrates by diagnosing a buck converter with an oddly strong voltage ripple in the output.

Some voltage ripple is an inherent feature of the buck converter design, but it’s inversely proportional to output capacitance, so most designs include a few smoothing capacitors on the output side. However, at 10 V and a 50% duty cycle, [Tahmit]’s converter had a ripple of 0.75 V, significantly above the predicted variation of 0.45 V. The discrepancy was even greater at 20 V.

The culprit was the effect of higher voltages on the ceramic smoothing capacitors: as the voltage increases, the dielectric barrier in the capacitors becomes less permittive, reducing their capacitance. Fortunately, unlike in the case of electrolytic capacitors, the degradation of ceramic capacitors performance with increasing voltage is usually described in specification sheets, and doesn’t have to be manually measured. After finding the reduced capacitance of his capacitors at 10 V, [Tahmid] calculated a new voltage ripple that was only 14.5% off from the true value.

Anyone who’s had much experience with electronics will have already learned that passive components – particularly capacitors – aren’t as simple as the diagrams make them seem. On the bright side, they are constantly improving.

A photo of the circuit board with components soldered on

A Solar-Only, Battery-Free Device That Harvests Energy From A BPW34 Photodiode

Normally when you think solar projects, you think of big photovoltaic cells. But a photodiode is just an inefficient, and usually much smaller, PV cell. Since [Pocket Concepts]’s Solar_nRF has such a low power budget, it can get away with using BPW34 photodiodes in place of batteries. (Video, embedded below.)

The BPW34 silicon PIN photodiode feeds a small voltage into a BQ25504 ultra-low-power boost converter energy harvester which stores power in a capacitor. When the capacitor is fully charged the battery-good pin is toggled which drives a MOSFET that powers everything downstream.

When it’s powered on, the Nordic nRF initializes, reads the current temperature from an attached I2C thermometer, and then sends out a Bluetooth Low Energy (BLE) advertising packet containing the temperature data. When the capacitor runs out of energy, the battery-good pin is turned off and downstream electronics become unpowered and the cycle begins again.

Continue reading “A Solar-Only, Battery-Free Device That Harvests Energy From A BPW34 Photodiode”

Building A 7-Segment Shadow Clock

There are plenty of conventional timepieces out there in the world; we’ve also featured a great many that are aesthetically beautiful while being unreadably esoteric. This neat “shadow clock” from [Smart Solutions for Home] is not conventional, but it’s still a clock you could use every day.

The display is made of four seven-segment digits, which have a subtle appearance. Each segment uses a solenoid to extend it forward out of the display, or to retract it flush with the faceplate. This creates a numerical display in all one color, with the physical protrusion doing the job of making the numbers visible. This is perhaps where the “shadow clock” name comes from, though you notice the protruding segments moreso than the shadows they cast on the faceplate.

Running the show is an ESP32, paired with H-bridges to drive the solenoids that make up the 7-segment displays. The H-bridges are driven via shift registers to reduce the number of GPIO pins needed. Unlike many other ESP32 clock builds, this one uses a DS3231 real-time clock module to keep accurate time, rather than solely relying on Internet-based NTP time servers. Configuring the clock can be done via a web interface. Design files are available online.

If you think you’ve seen this recently, maybe you’re thinkig of this prototype for a very similar display by [indoorgeek]. And that’s not the only way to make shadow clocks either. After all, the term is not enforced or defined by any global horological organization. Maybe that’s a good thing! Video after the break.

Continue reading “Building A 7-Segment Shadow Clock”

Cheap Thermal Camera Fits The Bill

If you want to save a little money on a thermal camera, or if you just enjoy making your own, you should have a look at [Evan Yu’s] GitHub repository, which has a well thought out project built around the MLX90640 and an ESP32. The cost is well under $100. You can watch it do its thing in the video below.

There’s a PCB layout, a 3D-printed case, and — of course — all the firmware files.  The code uses the Arduino IDE and libraries. It leverages off-the-shelf libraries for the display and the image sensor.

Continue reading “Cheap Thermal Camera Fits The Bill”