When Combat Robot Wheels Need To Be Nice And Cheap (But Mostly Cheap)

It started with [CHORL] making a promise to himself regarding constructing a new combat robot: no spending of money on the new robot.

That rule was violated (but only a little) by making his robot’s wheels out of EVA kneeling pads. EVA (Ethylene-Vinyl Acetate) is a closed-cell foam that makes for durable yoga mats, kneeling pads, and products of a similar nature. [CHORL] found a way to turn them into light but serviceable wheels for his robot: the Susquehanna Boxcar.

Nested hole saws create concentric holes. Perfect for wheels.

Here’s how the wheels were made: [CHORL] began with two hole saws. Nesting a smaller hole saw into a larger one by putting both on the same arbor created a saw with two holes, both of which were centered with respect to one another. The only problem was that this hole saw was not actually deep enough to cut completely through the thick foam. Luckily, cutting roughly halfway through on one side, then flipping the sheet over and cutting through from the other side was a good workaround. That took care of turning the thick foam sheet into round wheels.

A 3D-printed part served as a wheel hub as well as gear for the drivetrain. We want to call attention to the clever method of reinforcing the connection between the parts. [CHORL] didn’t want to just glue the geared hub directly to the surface of the foam wheel, because he suspected it might separate under stress. To address this, he designed six slots into the hub, cut matching slots into the foam wheel, and inserted six spline-like reinforcements in the form of some ABS strips he had on hand. Gluing it all together with E-6000 and leaving it to cure overnight under a weight resulted in a geared wheel assembly that [CHORL] judged to be about as round and rigid as a wheel should be, so the robot had a solution for nice light wheels that were, above all, cheap!

Lots of robots need wheels, and unsurprisingly, DIY solutions are common projects. [CHORL]’s approach here looks pretty scalable, as long as one can cut some accurate holes.

Interested in knowing more about the robot these wheels are destined for? [CHORL]’s still working on the Susquehanna Boxcar, but it’s almost done, and you can read a bit more about it (and see a few more pictures) here.

Vapor Trails And Fan Make For Fantastic Photos In DIY Wind Tunnel

Every wanted a mini wind tunnel to check the aerodynamics of scale model cars, drones, or other small objects? Then check out [dannyesp]’s mostly-3D-printed DIY wind tunnel (video, embedded below). Don’t forget to also browse the additional photos in this Reddit thread.

A junk parts project doesn’t have to look like a hack job.

There’s not much for plans available, since as [dannyesp] admits, this device was very much the product of trial-and-error and junk bin parts. The video and photos are more than enough for any enterprising hacker to work with.

The core of the device is a large fan made from a junked drone motor. This fan is located at the rear of the tunnel. A small anemometer is placed at the front, where some 3D-printed baffles also work to smooth out turbulent incoming air.

The foggy trails of vapor come from a hacked-up vape pen. Vapor gets piped through some tubing to the front of the tunnel. There, the vapor trails are drawn towards the low-pressure area at the rear, traveling over and around the object on the way. [dannyesp] also mentions that the platform holding the object is mounted on a rail, which incorporates some kind of pressure sensor in an attempt to quantify wind drag.

We want to take a moment to appreciate just how clean this “junk parts” project looks — even though it is made from things like broken photo frames. All of this comes down to thoughtful assembly. A hack doesn’t have to look like a hack job, after all. We also love the little control box that, instead of having a separate power indicator, lights up like a little nightlight when it has power.

Hacking vaporizers is a fantastic way to create a small, portable fog machine. These can create fantastic costume effects like this smoking Ghost Rider skull. They are a great way to turn an off-the-shelf consumer item into something that cost quite a bit more just a few years back.

Continue reading “Vapor Trails And Fan Make For Fantastic Photos In DIY Wind Tunnel”

GCore: Make Portable Devices With Less Frustration

[Dan Julio]’s gCore (short for Gadget Core) is aimed at making GUI-based portable and rechargeable gadgets much easier to develop. gCore is the result of [Dan]’s own need for a less tiresome way to develop such hardware.

A touchscreen is great, but high-quality power control and charging features are what really make a portable device sing.

[Dan] found that he seemed to always be hacking a lot of extra circuitry into development boards just to get decent power management and charge control. To solve this, he designed his own common hardware platform for portable gadgets and the gCore was born.

While the color touchscreen is an eye-catching and useful addition, the real star of his design is the power management and charging features. Unlike most development hardware, the gCore intelligently shares load power with charging power. Power on and power off are also all under software control.

Sound intriguing? That’s not all the gCore has to offer, and you can learn more from the project page at hackaday.io (which has a more in-depth discussion of the design decisions and concept.) There are also some additional photos and details on [Dan]’s website.

[Dan] is no stranger to developing hardware. The tcam-mini thermal imager (and much more) is his work, and we have no doubt the gCore’s design and features are informed directly by [Dan]’s actual, practical development needs.

3D Print Your Own Multi-Color Filament

Interested in experimenting with your own multi-color filament? [Turbo_SunShine] says to just print your own, and experiment away! Now, if you’re thinking that 3D printing some filament sounds inefficient at best (and a gimmick at worst) you’re not alone. But there’s at least one use case that it makes sense for, and maybe others as well.

Printing with bi-color filament results in an object whose color depends on viewing angle, and part geometry.

There is such a thing as bi-color filament (like MatterHackers Quantum PLA) which can be thought of as filament that is split down the center into two different colors. Printing with such filament can result in some trippy visuals, like objects whose color depends in part on the angle from which they are viewed. Of course, for best results it makes sense to purchase a factory-made spool, but for light experimenting, it’s entirely possible to 3D print your own bi-color filament. Back when [Turbo_SunShine] first shared his results, this kind of stuff wasn’t available off the shelf like it is today, but the technique can still make sense in cases where buying a whole spool isn’t called for.

Here is how it works: the 3D model for filament is a spiral that is the right diameter for filament, printed as a solid object. The cross-section of this printed “filament” is a hexagon rather than a circle, which helps get consistent results. To make bi-color filament, one simply prints the first half of the object in one color, then performs a color change, and finishes the print with a second color. End result? A short coil of printed “filament”, in two colors, that is similar enough to the normal thing to be fed right back into the printer that created it. This gallery of photos from [_Icarus] showcases the kind of results that are possible.

What do you think? Is 3D printing filament mainly an exercise in inefficiency, or is it a clever leveraging of a printer’s capabilities? You be the judge, but it’s pretty clear that some interesting results can be had from the process. Take a few minutes to check out the video (embedded below) for some additional background.

Continue reading “3D Print Your Own Multi-Color Filament”

Does Hot Water Freeze Faster Than Cold? Debate Continues Over The Mpemba Effect

Does hot water freeze faster than cold water? On its face this idea seems like it should be ridiculously simple to test, and even easier to intuit, but this question has in fact had physicists arguing for decades.

Erasto Mpemba’s observations initiated decades of research into the Mpemba effect: whether a liquid (typically water) which is initially hot can freeze faster than the same liquid which begins cold.

There’s a name for the phenomenon of something hot freezing faster than something cold: the Mpemba effect,  named for Erasto Mpemba (pictured above) who as a teenager in Tanzania witnessed something strange in high school in the 1960s. His class was making ice cream, and in a rush to secure the last available ice tray, Mpemba skipped waiting for his boiled milk-and-sugar mixture to cool to room temperature first, like everyone else had done. An hour and a half later, his mixture had frozen into ice cream whereas the other students’ samples remained a thick liquid slurry.

Puzzled by this result, Mpemba asked his physics teacher what was going on. He was told “You were confused. That cannot happen.” Mpemba wasn’t convinced by that answer, and his observations ultimately led to decades of research.

What makes this question so hard to nail down? Among many of the issues complicating exactly how to measure such a thing is that water frankly has some odd properties; it is less dense as a solid, and it is also possible for its solid and liquid phases to exist at the same temperature. Also, water in the process of freezing is not in equilibrium, and how exactly things act as they relax into equilibrium is a process for which — physics-wise — we lack a good theory. Practically speaking, it’s also a challenge how to even accurately and meaningfully measure the temperature of a system that is not in equilibrium.

But there is experimental evidence showing that the Mpemba effect can occur, at least in principle. How this can happen seems to come down to the idea that a hot system (having more energy) is able to occupy and explore more configurations, potentially triggering states that act as a kind of shortcut or bypass to a final equilibrium. In this way, something that starts further away from final equilibrium could overtake something starting from closer.

But does the Mpemba effect actually exist — for example, in water — in a meaningful way? Not everyone is convinced, but if nothing else, it has sure driven a lot of research into nonequilibrium systems.

Why not try your own hand at investigating the Mpemba effect? After all, working to prove someone wrong is a time-honored pastime of humanity, surpassed only in popularity by the tradition of dismissing others’ findings, observations, or results without lifting a finger of your own. Just remember to stick to the scientific method. After all, people have already put time and effort into seriously determining whether magnets clean clothes better than soap, so surely the Mpemba effect is worth some attention.

DIY Night Vision, Where Four Is Better Than Two

Night vision projects are great, and the hardware available to hobbyists just gets better and better. [Just Call Me Koko] shows off just such a build using four low-light, IR-sensitive cameras, four displays, and four lenses in 3D printed enclosures mounted to a helmet. Why four? Well, mounting two cameras and displays per eye is the easiest way to yield a wider field of view, and for bonus points, it sure looks extra weird.

At its heart, each of the four segments is the same. A Foxeer Night Cat 3 camera is mounted at the front, its output is connected directly to a 2″ diagonal NTSC/PAL display, and at the rear is a DCX (double convex) lens 38 mm in diameter with a 50 mm focal length. Add a printed enclosure, and the result is a monocular night vision display. Do it three more times and arrange them around one’s eyeballs, and one can make a night vision system with a panoramic view that probably takes only a little getting used to.

How well does it work? [Just Call Me Koko] does some walking around and also tries some target practice while wearing them, and concludes that while they don’t have nearly the clarity of the real deal (the 320×240 resolution displays limit the details one can perceive), they do work fairly well for what they are. Also, the cost of parts is a small fraction of the cost of the real thing, making it a pretty enjoyable project in the end.

The kind of hardware available to hobbyists today is what makes this kind of night vision project accessible, but there’s always the good old high-voltage analog method.

Continue reading “DIY Night Vision, Where Four Is Better Than Two”

VR Prototypes Reveal Facebook’s Surprisingly Critical Research Directions

A short while ago, Tested posted a video all about hands-on time with virtual reality (VR) headset prototypes from Meta (which is to say, Facebook) and there are some genuinely interesting bits in there. The video itself is over an hour long, but if you’re primarily interested in the technical angles and why they matter for VR, read on because we’ll highlight each of the main points of research.

As absurd as it may seem to many of us to have a social network spearheading meaningful VR development, one can’t say they aren’t taking it seriously. It’s also refreshing to see each of the prototypes get showcased by a researcher who is clearly thrilled to talk about their work. The big dream is to figure out what it takes to pass the “visual Turing test”, which means delivering visuals that are on par with that of a physical reality. Some of these critical elements may come as a bit of a surprise, because they go in directions beyond resolution and field-of-view.

Solid-state varifocal lens demo, capable of 32 discrete focal steps.

At 9:35 in on the video, [Douglas Lanman] shows [Norman Chan] how important variable focus is to delivering a good visual experience, followed by a walk-through of all the different prototypes they have used to get that done. Currently, VR headsets display visuals at only one focal plane, but that means that — among other things — bringing a virtual object close to one’s eyes gets blurry. (Incidentally, older people don’t find that part very strange because it is a common side effect of aging.)

The solution is to change focus based on where the user is looking, and [Douglas] shows off all the different ways this has been explored: from motors and actuators that mechanically change the focal length of the display, to a solid-state solution composed of stacked elements that can selectively converge or diverge light based on its polarization. [Doug]’s pride and excitement is palpable, and he really goes into detail on everything.

At the 30:21 mark, [Yang Zhao] explains the importance of higher resolution displays, and talks about lenses and optics as well. Interestingly, the ultra-clear text rendering made possible by a high-resolution display isn’t what ended up capturing [Norman]’s attention the most. When high resolution was combined with variable focus, it was the textures on cushions, the vividness of wall art, and the patterns on walls that [Norman] found he just couldn’t stop exploring.

Continue reading “VR Prototypes Reveal Facebook’s Surprisingly Critical Research Directions”