January 9 ended up being a very expensive day for a Culver City, California man after he pleaded guilty to recklessly operating a drone during the height of the Pacific Palisades wildfire. We covered this story a bit when it happened (second item), which resulted in the drone striking and damaging the leading edge of a Canadian “Super Scooper” plane that was trying to fight the fire. Peter Tripp Akemann, 56, admitted to taking the opportunity to go to the top of a parking garage in Santa Monica and launching his drone to get a better view of the action to the northwest. Unfortunately, the drone got about 2,500 meters away, far beyond visual range and, as it turns out, directly in the path of the planes refilling their tanks by skimming along the waters off Malibu. The agreement between Akemann and federal prosecutors calls for a guilty plea along with full restitution to the government of Quebec, which owns the damaged plane, plus the costs of repair. Akemann needs to write a check for $65,169 plus perform 150 hours of community service related to the relief effort for the fire’s victims. Expensive, yes, but probably better than the year in federal prison such an offense could have earned him.
Author: Dan Maloney3236 Articles
Retrotechtacular: Point-of-Sale Through The Years
In days gone by, a common retail hack used by some of the less honorable of our peers was the price tag switcheroo. You’d find some item that you wanted from a store but couldn’t afford, search around a bit for another item with a more reasonable price, and carefully swap the little paper price tags. As long as you didn’t get greedy or have the bad luck of getting a cashier who knew the correct prices, you could get away with it — at least up until the storekeeper wised up and switched to anti-tamper price tags.
For better or for worse, those days are over. The retail point-of-sale (POS) experience has changed dramatically since the time when cashiers punched away at giant cash registers and clerks applied labels to the top of every can of lima beans in a box with a spiffy little gun. The growth and development of POS systems is the subject of [TanRu Nomad]’s expansive video history, and even if you remember the days when a cashier kerchunked your credit card through a machine to take an impression of your card in triplicate, you’ll probably learn something.
Continue reading “Retrotechtacular: Point-of-Sale Through The Years”
Split-Flap Clock Makes A Nice Side Quest In Larger Project
Sometimes projects spawn related projects that take on a life of their own. That’s OK, especially when the main project is large and complex, In that case, side-quest projects provide a deliverable that can help keep the momentum of the whole project going. The mojo must flow, after all.
That seems to be what’s going on with this beautiful split-flap clock build by [Erich Styger]. It’s part of a much larger effort which will eventually see 64 separate split-flap units chained together. This project has been going on for a while; we first featured it back in 2022 when it was more of a prototype. Each unit is scratch-built, using laser-cut fiberboard for parts like the spool and frame, thin PVC stock for the flip cards, and CNC-cut vinyl for the letters and numbers. Each unit is powered by its own stepper motor.
To turn four of these displays into a clock, [Erich] milled up a very nice enclosure from beech. From the outside it’s very clean and simple, almost like something from Ikea, but the inside face of the enclosure is quite complex. [Erich] had to mill a lot of nooks and crannies into the wood to provide mounting space and clearance for the split-flap mechanism, plus a thinned-down area at the top of each window to serve as a stop for the flaps. The four displays are controlled by a single controller board, which houses an NXP K22FN512 microcontroller along with four stepper drivers and interfaces for the Hall-effect sensors needed to home each display. There’s also an RS-485 interface that lets the controllers daisy-chain together, which is how the big 64-character display will be controlled.
We’re looking forward to that, but in the meantime, enjoy the soft but pleasant flappy goodness of the clock in the brief video below.
Continue reading “Split-Flap Clock Makes A Nice Side Quest In Larger Project”
Custom PCB Is A Poor Man’s Pick And Place
Surface mount devices have gotten really small, so small that a poorly timed sneeze can send your 0603 and 0402 parts off to live with the dust motes lurking at the edge of your bench. While soldering such parts is a challenge, it’s not always size that matters. Some parts with larger footprints can be a challenge because of the pin pitch, and getting them to land just right on the PCB pads can be a real pain.
To fight this problem, [rahmanshaber] came up with this clever custom PCB fixture. The trick is to create a jig to hold the fine-pitch parts securely while still leaving room to work. In his case, the parts are a couple of SMD ribbon cable connectors and some chips in what appear to be TQFP packages. [rahmanshaber] used FreeCAD to get the outline of each part from the 3D model of his PCB, and KiCad to design the cutouts; skip to 7:30 or so in the video below if you don’t need the design lesson. The important bit is to leave enough room around the traces so that the part’s leads can rest of the PCB while still having room to access them.
Using the fixture is pretty intuitive. The fixture is aligned over the footprint of the part and fixed in place with some tape. Solder paste is applied to the pads, the part is registered into the hole, and you’re ready for soldering. [rahmanshaber] chose to use a hot plate to do the soldering, but it looks like there’s enough room for a soldering iron, if that’s your thing.
It’s a simple idea, but sometimes the simplest tools are the best. We’ve seen lots of other simple SMD tools, from assembly jigs to solder paste stencil fixtures. Continue reading “Custom PCB Is A Poor Man’s Pick And Place”
Homebrew Foil And Oil Caps Change Your Guitar’s Tone
How any string instrument sounds depends on hundreds of factors; even the tiniest details matter. Seemingly inconsequential things like whether the tree that the wood came from grew on the north slope or south slope of a particular valley make a difference, at least to the trained ear. Add electronics into the mix, as with electric guitars, and that’s a whole other level of choices that directly influence the sound.
To experiment with that, [Mark Gutierrez] tried rolling some home-brew capacitors for his electric guitar. The cap in question is part of the guitar’s tone circuit, which along with a potentiometer forms a variable low-pass filter. A rich folklore has developed over the years around these circuits and the best way to implement them, and there are any number of commercially available capacitors with the appropriate mojo you can use, for a price.
[Mark]’s take on the tone cap is made with two narrow strips of regular aluminum foil separated by two wider strips of tissue paper, the kind that finds its way into shirt boxes at Christmas. Each of the foil strips gets wrapped around and crimped to a wire lead before the paper is sandwiched between. The whole thing is rolled up into a loose cylinder and soaked in mineral oil, which serves as a dielectric.
To hold the oily jelly roll together, [Mark] tried both and outer skin of heat-shrink tubing with the ends sealed by hot glue, and a 3D printed cylinder. He also experimented with a wax coating to keep the oily bits contained. The video below shows the build process as well as tests of the homebrew cap against a $28 commercial equivalent. There’s a clear difference in tone compared to switching the cap out of the circuit, as well as an audible difference in tone between the two caps. We’ll leave the discussion of which sounds better to those with more qualified ears; fools rush in, after all.
Whatever you think of the sound, it’s pretty cool that you can make working capacitors so easily. Just remember to mark the outer foil lead, lest you spoil everything.
Continue reading “Homebrew Foil And Oil Caps Change Your Guitar’s Tone”
Underwater Robotics Hack Chat
Join us on Wednesday, February 5 at noon Pacific for the Underwater Robotics Hack Chat with Tony White!
Almost anywhere you look, there’s a good chance you can see a robot at work. Whether they’re sweeping your floors, delivering a snack, building a car, or even driving one, robots are everywhere on this planet. And since over 70% of this planet is covered in water, it makes sense that robots should be there, too. Getting a robot to work underwater at all is one thing, but getting it to work underwater reliably can be quite a challenge. Water always finds a way to ruin your day, after all, and this reality only worsens when you add a little salt into the mix.
Tony White knows the marine engineering field well, having worked in the space for over a decade. He’s currently an applications engineer at Blue Robotics, where he’s worked on everything from full-size autonomous surface vessels to underwater swarm robots. He’s stopping by the Hack Chat to talk about the harsh engineering realities of underwater automation, so if you’ve ever wanted to take the plunge, you’ll want to come to this Hack Chat for sure.
Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, February 5 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.
Hackaday Links: February 2, 2025
All things considered, it was a very bad week for aviation here in the United States. Three separate crashes, two of which involved US military aircraft, have left over 70 people dead. We’ll spare you the details since there are plenty of other places to get news like that, but we did want to touch on one bright spot in this week’s aviation news: the first successful supersonic flight by a US-made civilian aircraft. There are a lot of caveats to that claim, but it’s clear that Boom Supersonic is on a path to commercializing supersonic air transportation for the first time since the Concorde was retired. Their XB-1 “Baby Boom” test aircraft managed three separate supersonic runs during the January 28 test flight over the Mojave test range. As usual, Scott Manley has excellent coverage of the test flight, including a look at how Boom used a Starlink terminal and an iPhone to stream cockpit video.