Chemistry Meets Mechatronics In This Engaging Art Piece

There’s a classic grade school science experiment that involves extracting juice from red cabbage leaves and using it as a pH indicator. It relies on anthocyanins, pigmented compounds that give the cabbage its vibrant color but can change depending on the acidity of the environment they’re in, from pink in acidic conditions to green at higher pH. And anthocyanins are exactly what power this unusual kinetic art piece.

Even before it goes into action, [Nathalie Gebert]’s Anthofluid is pretty cool to look at. The “canvas” of the piece is a thin chamber formed by plexiglass sheets, one of which is perforated by an array of electrodes. A quartet of peristaltic pumps fills the chamber with a solution of red cabbage juice from a large reservoir, itself a mesmerizing process as the purple fluid meanders between the walls of the chamber and snakes around and between the electrodes. Once the chamber is full, an X-Y gantry behind the rear wall moves to a random set of electrodes, deploying a pair of conductors to complete the circuit. When a current is applied, tendrils of green and red appear, not by a pH change but rather by the oxidation and reduction reactions occurring at the positive and negative electrodes. The colors gently waft up through the pale purple solution before fading away into nothingness. Check out the video below for the very cool results.

We find Anthofluid terribly creative, especially in the use of such an unusual medium as red cabbage juice. We also appreciate the collision of chemistry, electricity, and mechatronics to make a piece of art that’s so kinetic but also so relaxing at the same time. It’s the same feeling that [Nathalie]’s previous art piece gave us as it created images on screens of moving thread. Continue reading “Chemistry Meets Mechatronics In This Engaging Art Piece”

World’s Smallest Blinky, Now Even Smaller

Here at Hackaday, it’s a pretty safe bet that putting “World’s smallest” in the title of an article will instantly attract comments claiming that someone else built a far smaller version of the same thing. But that’s OK, because if there’s something smaller than this nearly microscopic LED blinky build, we definitely want to know about it.

The reason behind [Mike Roller]’s build is simple: he wanted to build something smaller than the previous smallest blinky. The 3.2-mm x 2.5-mm footprint of that effort is a tough act to follow, but technology has advanced somewhat in the last seven years, and [Mike] took advantage of that by basing his design on an ATtiny20 microcontroller in a WLCSP package and an 0201 LED, along with a current-limiting resistor and a decoupling capacitor. Powering the project is a 220-μF tantalum capacitor, which at a relatively whopping 3.2 mm x 1.6 mm determines the size of the PCB, which [Mike] insisted on using.

Assembling the project was challenging, to say the least. [Mike] originally tried a laboratory hot plate to reflow the board, but when the magnetic stirrer played havoc with the parts, he switched to a hot-air rework station with a very low airflow. Programming the microcontroller almost seemed like it was more of a challenge; when the pogo pins he was planning to use proved too large for the job he tacked leads made from 38-gauge magnet wire to the board with the aid of a micro hot air tool.

After building version one, [Mike] realized that even smaller components were available, so there’s now a 2.4 mm x 1.5 mm version using an 01005 LED. We suspect there’ll be a version 3.0 soon, though — he mentions that the new TI ultra-small microcontrollers weren’t available yet when he pulled this off, and no doubt he’ll want to take a stab at this again.

From The Ashes: Coal Ash May Offer Rich Source Of Rare Earth Elements

For most of history, the world got along fine without the rare earth elements. We knew they existed, we knew they weren’t really all that rare, and we really didn’t have much use for them — until we discovered just how useful they are and made ourselves absolutely dependent on them, to the point where not having them would literally grind the world to a halt.

This dependency has spurred a search for caches of rare earth elements in the strangest of places, from muddy sediments on the sea floor to asteroids. But there’s one potential source that’s much closer to home: coal ash waste. According to a study from the University of Texas Austin, the 5 gigatonnes of coal ash produced in the United States between 1950 and 2021 might contain as much as $8.4 billion worth of REEYSc — that’s the 16 lanthanide rare earth elements plus yttrium and scandium, transition metals that aren’t strictly rare earths but are geologically associated with them and useful in many of the same ways. Continue reading “From The Ashes: Coal Ash May Offer Rich Source Of Rare Earth Elements”

Ask Hackaday: What Would You Do With The World’s Smallest Microcontroller?

It’s generally pretty easy to spot a microcontroller on a PCB. There are clues aplenty: the more-or-less central location, the nearby crystal oscillator, the maze of supporting passives, and perhaps even an obvious flash chip lurking about. The dead giveaway, though, is all those traces leading to the chip, betraying its primacy in the circuit. As all roads lead to Rome, so it often is with microcontrollers.

It looks like that may be about to change, though, based on Texas Instruments’ recent announcement of a line of incredibly small Arm-based microcontrollers. The video below shows off just how small the MSPM0 line can be, ranging from a relatively gigantic TSSOP-20 case down to an eight-pin BGA package that measures only 1.6 mm by 0.86 mm. That’s essentially the size of an 0603 SMD resistor, a tiny footprint for a 24-MHz Cortex M0+ MCU with 16-kB of flash, 1-kB of SRAM, and a 12-bit ADC. The larger packages obviously have more GPIO brought out to pins, but even the eight-pin versions support six IO lines.

Of course, it’s hard not to write about a specific product without sounding like you’re shilling for the company, but being first to market with an MCU in this size range is certainly newsworthy. We’re sure other manufacturers will follow suit soon enough, but for now, we want to know how you would go about using a microcontroller the size of a resistor. The promo video hints at TI’s target market for these or compact wearables by showing them used in earbuds, but we suspect the Hackaday community will come up with all sorts of creative and fun ways to put these to use — shoutout to [mitxela], whose habit of building impossibly small electronic jewelry might be a good use case for something like this.

There may even be some nefarious use cases for a microcontroller this small. We were skeptical of the story about “spy chips” on PC motherboards, but a microcontroller that can pass for an SMD resistor might change that equation a bit. There’s also the concept of “Oreo construction” that these chips might make a lot easier. A board with a microcontroller embedded within it could be a real security risk, but on the other hand, it could make for some very interesting applications.

What’s your take on this? Can you think of applications where something this small is enabling? Or are microcontrollers that are likely to join the dust motes at the back of your bench after a poorly timed sneeze a bridge too far? Sound off in the comments below.

Continue reading “Ask Hackaday: What Would You Do With The World’s Smallest Microcontroller?”

Hackaday Links Column Banner

Hackaday Links: March 16, 2025

“The brickings will continue until the printer sales improve!” This whole printer-bricking thing seems to be getting out of hand with the news this week that a firmware update caused certain HP printers to go into permanent paper-saver mode. The update was sent to LaserJet MFP M232-M237 models (opens printer menu; checks print queue name; “Phew!) on March 4, and was listed as covering a few “general improvements and bug fixes,” none of which seem very critical. Still, some users reported not being able to print at all after the update, with an error message suggesting printing was being blocked thanks to non-OEM toner. This sounds somewhat similar to the bricked Brother printers we reported on last week (third paragraph).

Continue reading “Hackaday Links: March 16, 2025”

Building A Ten-Hundred Key Computer Word-Giving Thing

From the styling of this article’s title, some might assume that the Hackaday editors are asleep at the switch this fine day. While that might be true — it’s not our turn to watch them — others will recognize this tortured phrasing as one way to use the 1,000 most commonly used words in the English language to describe a difficult technical project, such as [Attoparsec]’s enormous and enormously impractical ten-hundred word keyboard.

While the scale of this build is overwhelming enough, the fact that each key delivers a full word rather than a single character kind of throws the whole keyboard concept out the window. The 60×17 matrix supports the 1,000 most common English words along with 20 modifier keys, which allow a little bit of cheating on the 1-kiloword dictionary by letting you pluralize a word or turn it into an adjective or adverb. Added complexity comes from the practical limits of PCB fabrication, which forces the use of smaller (but still quite large) PCBs that are connected together. Luckily, [Attoparsec] was able to fit the whole thing on five identical PCBs, which were linked together with card-edge connectors.

The list of pain points on this six-month project is long, and the video below covers them all in detail. What really stood out to us, though, was the effort [Attoparsec] put into the keycaps. Rather than 3D printing his own, he used dye sublimation to label blank keycaps with the 1,000 words. That might sound simple, but he had to go through a lot of trial and error before getting a process that worked, and the results are quite nice. Another problem was keeping the key switches aligned while soldering, which was solved with a 3D printed jig. We also appreciate the custom case to keep this keyboard intact while traveling; we’re going to keep that build-your-own road case service in mind for future projects.

This mega-keyboard is a significant escalation from [Attoparsec]’s previous large keyboard project. The results are pretty ridiculous and impractical, but that’s just making us love it more. The abundance of tips and tricks for managing a physically expansive project are just icing on the cake.

Continue reading “Building A Ten-Hundred Key Computer Word-Giving Thing”

The Mysterious And Important Work Of Prop Design On Severance

Have you seen Severance? Chances are good that you have; the TV series has become wildly popular in its second season, to the point where the fandom’s dedication is difficult to distinguish from the in-universe cult of [Kier]. Part of the show’s appeal comes from its overall aesthetic, which is captured in this description of the building of one of the show’s props.

A detailed recap of the show is impossible, but for the uninitiated, a mega-corporation called Lumon has developed a chip that certain workers have implanted in their brains to sever their personalities and memories into work and non-work halves. The working “Innies” have no memory of what their “Outies” do when they aren’t at work, which sounds a lot better than it actually ends up being. It’s as weird as it sounds, and then some.

The prop featured here is the “WoeMeter” from episode seven of season two, used to quantify the amount of woe in a severed worker — told you it was weird. The prop was built by design house [make3] on a short timeline and after seeing only some sketches and rough renders from the production designers, and had to echo the not-quite-midcentury modern look of the whole series. The builders took inspiration from, among other things, a classic Nagra tape recorder, going so far as to harvest its knobs and switches to use in the build. The controls are all functional and laid out in a sensible way, allowing the actors to use the device in a convincing way. For visual feedback, the prop has two servo-operated meters and a string of seven-segment LED displays, all controlled by an ESP-32 mounted to a custom PCB. Adding the Lumon logo to the silkscreen was a nice touch.

The prop maker’s art is fascinating, and the ability to let your imagination run wild while making something that looks good and works for the production has got to be a blast. [make3] really nailed it with this one.

Thanks to [Aaron’s Outie] for the tip.