JWST mirror actuator model

Working Model Reveals Amazing Engineering Of Webb’s Mirror Actuators

We end up covering a lot of space topics here on Hackaday, not because we’re huge space nerds — spoiler alert: we are — but because when you’ve got an effectively unlimited budget and a remit to make something that cannot fail, awe-inspiring engineering is often the result. The mirror actuators on the James Webb Space Telescope are a perfect example of this extreme engineering, and to understand how they work a little better, [Zachary Tong] built a working model of these amazing machines.

The main mirror of the JWST is made of 18 separate hexagonal sections, the position of each which must be finely tuned to make a perfect reflector. Each mirror has seven actuators that move it through seven degrees of freedom — the usual six that a Stewart platform mechanism provides, plus the ability to deform the mirror’s curvature slightly. [Zach]’s model actuator is reverse-engineered from public information (PDF) made available by the mirror contractor, Ball Aerospace. While the OEM part is made from the usual space-rated alloys and materials, the model is 3D printed and powered by a cheap stepper motor.

That simplicity belies the ingenious mechanism revealed by the model. The actuators allow for both coarse and fine adjustments over a wide range of travel. A clever tumbler mechanism means that only one motor is needed for both fine and coarse adjustments, and a flexure mechanism is used to make the fine adjustments even finer — a step size of only 8 nanometers!

Hats off to [Zach] for digging into this for us, and for making all his files available in case you want to print your own. You may not be building a space observatory anytime soon, but there’s plenty about these mechanisms that can inform your designs.

Continue reading “Working Model Reveals Amazing Engineering Of Webb’s Mirror Actuators”

Pick and place reels

Pick And Place Hack Chat

Join us on Wednesday, February 9 at noon Pacific for the Pick and Place Hack Chat with Chris Denney!

We in the hacker trade are pretty used to miracles — we make them all the time. But even the most jaded among us has to admit that modern PCB assembly, where components that could easily hide under a grain of sand are handled by robots, borders on witchcraft. The pick and place machines that work these wonders not only have to hit their marks accurately and precisely, but they also do it at blinding speeds and for days on end.

join-hack-chatLuckily, even those of us who design circuits for a living and depend on PCB assembly services to realize those designs can, at least to some degree, abstract the details of the pick and place phase of the process away. But making it “just work” isn’t a trivial task, and learning a little bit about what it takes to do so can make us better designers. Plus, it’s just plain cool to watch a pick and place do its thing. And to dive a little deeper into pick and place, Chris Denney, CTO of Worthington Assembly and co-host of “Pick, Place, Podcast” will stop by the Hack Chat. If you’ve ever wondered about the inner workings of PCB assembly and the role pick and place plays in it, or if you’re looking for tips on how to optimize your layouts for pick and place, this is one you won’t want to miss!

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, February 9 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Continue reading “Pick And Place Hack Chat”

Integrating sphere test setup

Cannonball Mold Makes A Dandy Integrating Sphere For Laser Measurements

It’s an age-old riddle: if you have a perfect sphere with a perfectly reflective inner surface, will light bounce around inside it forever? The answer is pretty obvious when you think it through, but that doesn’t mean that you can’t put the principle to use, as we see with this homemade Ulbricht sphere for optical measurements.

If you’ve never heard of an Ulbricht sphere, don’t worry — it’s also known as an integrating sphere, and that makes its function a little more apparent. As [Les Wright] explains, an integrating sphere is an optical element with a hollow spherical cavity that’s coated with a diffusely reflective coating. There are two ports in the sphere, one for admitting light — usually from a laser — and one for light to exit. The light bounces around inside the sphere and becomes perfectly diffuse, and creates a uniform beam at the exit port.

[Les]’ need for an integrating sphere comes from the desire to measure the output of some of his lasers with his Raspberry Pi-based PySpectrometer. Rather than shell out for an expensive commercial integrating sphere, or turn one on a lathe, [Les] turned to an unlikely source: cannonball molds. The inside of the mold was painted with an equally unlikely ultra-white paint concocted from barium sulfate and PVA glue. With a few ports machined into the mold, it works perfectly to diffuse the light from his dye lasers for proper measurements.

Lasers can be an expensive hobby, but [Les] always seems to find a way to make things more affordable and just as good. Whether it’s homemade doorknob caps for high-voltage power supplies or blasting the Bayer filter off a cheap CCD camera, he always seems to find a way.

Continue reading “Cannonball Mold Makes A Dandy Integrating Sphere For Laser Measurements”

Hackaday Links Column Banner

Hackaday Links: February 6, 2022

Last week, the news was filled with stories of Jack Sweeney and his Twitter-bot that tracks the comings and goings of various billionaires in their private jets. This caught the attention of the billionaire-iest of them all, one Elon Musk, who took exception to the 19-year-old’s feat of data integration, which draws from a number of public databases to infer the location of Elon’s plane. After Jack wisely laughed off Elon’s measly offer of $5,000 to take the bot down, Elon ghosted him — pretty childish behavior for the richest man on the planet, we have to say. But Jack might just have the last laugh, as an Orlando-based private jet chartering company has now offered him a job. Seems like his Twitter-bot and the resulting kerfuffle is a real resume builder, so job-seekers should take note.

Here’s hoping that you have a better retirement plan than NASA. The space agency announced its end-of-life plans for the International Space Station this week, the details of which will just be a run-up to the 2031 de-orbit and crash landing of any remaining debris into the lonely waters of Point Nemo. The agency apparently sees the increasingly political handwriting on the ISS’s aging and sometimes perforated walls, and acknowledges that the next phase of LEO space research will be carried out by a fleet of commercial space stations, none of which is close to existing yet. Politics aside, we’d love to dig into the technical details of the plan, and see exactly what will be salvaged from the station before its fiery demise, if anything. The exact method of de-orbiting too would be interesting — seems like the station would need quite a bit of thrust to put on the brakes, and might need the help of a sacrificial spacecraft.

“You break it, you fix it,” is a philosophy that we Hackaday types are probably more comfortable with than the general public, who tend to leave repairs of broken gear to professionals. But that philosophy seems to be at the core of Google’s new Chromebook repair program for schools, which encourages students to fix the Chromebooks they’re breaking in record numbers these days. Google is providing guidance for schools on setting up complete Chromebook repair facilities, including physical layout of the shop, organization of workflows, and complete repair information for at least a couple of popular brands of the stripped-down laptops. Although the repairs are limited to module-level stuff, like swapping power supplies, we still love the sound of this. Here’s hoping that something like this can trigger an interest in electronics for students that would otherwise never think to open up something as complicated as a laptop.

Back in July, we took note of a disturbing report of an RTL-SDR enthusiast in Crimea who was arrested for treason, apparently based on his interest in tracking flights and otherwise monitoring the radio spectrum. Now, as things appear to be heating up in Ukraine again, our friends at RTL-SDR.com are renewing their warning to radio enthusiasts in the area that there may still be risks. Then as now, we have little interest in the politics of all this, but in light of the previous arrest, we’d say it pays to be careful with how some hobbies are perceived.

And finally, aside from the aforementioned flight-tracking dustup, it’s been a tough week for Elon and Tesla. Not only have 817,000 of the expensive electric vehicles been recalled over something as simple as a wonky seatbelt chime, but another 54,000 cars are also being recalled for a software bug that causes them to ignore stop signs in “Full Self-Driving” mode. We’re not sure if this video of this Tesla hell-ride has anything to do with that bug, but it sure illustrates the point that FSD isn’t really ready for prime time. Then again, as a former Boston resident, we can pretty safely say that what that Tesla was doing isn’t really that much different than the meat-based drivers there.

Backpack COVID-19 lab

HDD Centrifuge Puts COVID-19 Testing Lab In A Backpack

Throughout this two-year global COVID-19 nightmare, one thing that has been sorely lacking is access to testing. “Flu-like symptoms” covers a lot of ground, and knowing if a sore throat is just a sore throat or something more is important enough that we’ve collectively plowed billions into testing. Unfortunately, the testing infrastructure remains unevenly distributed, which is a problem this backpack SARS-CoV-2 testing lab aims to address.

The portable lab, developed by [E. Emily Lin] and colleagues at the Queen Mary University of London, uses a technique called LAMP, for loop-mediated isothermal amplification. LAMP probably deserves an article of its own to explain the process, but suffice it to say that like PCR, LAMP amplifies nucleic acid sequences, but does so without the need for expensive thermal cycling equipment. The kit contains a microcentrifuge that’s fashioned from an e-waste hard drive, a 3D printed rotor, and an Arduino to drive the motor and control the speed. The centrifuge is designed to run on any 12 VDC source, meaning the lab can be powered by a car battery or solar panel if necessary. Readout relies on the trusty Mark I eyeball and a pH-indicating buffer that changes color depending on how much SARS-CoV-2 virus was in the sample.

Granted, the method used here still requires more skill to perform than a simple “spit on a stick” rapid antigen test, and it’s somewhat more subjective than the “gold standard” quantitative polymerase chain reaction (qPCR) assay. But the method is easily learned, and the kit’s portability, simple design, and low-cost construction could make it an important tool in attacking this pandemic, or the next one.

Thanks to [Christian Himmler] for the tip.

IoT toilet paper sheet counter

Keep Track Of Toilet Paper Usage With This IoT Roll Holder

Remember the Great Toilet Paper Crisis of 2020? We sure do, and it looks like our old friend [Vije Miller] does as well, while seemingly harboring a somewhat morbid fascination about how much paper every bathroom visitor is consuming. And to that end, we present his IoT toilet sheet tracker.

His 3D printed roll holder has a Hall effect sensor that counts revolutions of the roll and sends it to a NodeMCU. The number of sheets per roll is entered when the roll is changed, so some simple math yields the number of sheets each yank consumes. Or at least a decent estimate — [Vije] admits that there’s some rounding necessary. The best part of the build is the connection to Thingspeak, where sheet usage is plotted and displayed. Go ahead and check it out if you dare; at the time of writing, there was an alarming spike in sheet usage — a sudden need for 68 sheets where the baseline usage is in single digits. We shudder to think what might have precipitated that. The video below is — well, let’s just say there’s a video.

This isn’t the first time we’ve seen bathroom-based projects from [Vije Miller]. A few years back there was an attempt to freshen the air with plasma, and his IoT shower valve controller probably never scalded anyone accidentally.

Continue reading “Keep Track Of Toilet Paper Usage With This IoT Roll Holder”

da Vinci-like quadcopter

Renaissance-Style Drone Would Make Da Vinci Proud Four Times Over

For as much of a genius as Leonardo da Vinci obviously was, modern eyes looking upon his notebooks from the 1400s tend to see his designs as somewhat quaint. After all, his concept of a vehicle armored with wood would probably only have survived the archers and pikemen of a Renaissance battlefield, and his curious helicopter driven by an Archimedes screw would certainly never fly, right?

Don’t tell that to [Austin Prete] and his team from the University of Maryland, who’ve built a da Vinci-style quadcopter that actually flies. Called the “Crimson Spin”, the quad is based on a standard airframe and electronics. Details are sparse — the group just presented the work at a vertical flight conference — but it appears the usual plastic props are replaced with lightweight screws made from wire and some sort of transparent plastic membrane. Opposing pairs of screws have the opposite handedness, which gives the quad yaw control. There’s a video embedded in the link above that shows the quad being tested both indoors and out, and performing surprisingly well. We’d imagine that Crimson Spin might not do so well on a windy day, given the large wind cross-section those screws present, but the fact it got off the ground at all is cool enough. It kind of makes you wonder where we’d be today if da Vinci had access to BLDCs.

For as fanciful as da Vinci’s designs can be, we’ve seen a fair number of attempts to recreate them in modern materials. His cryptex is a perennial favorite for hackers, and his bizarre piano-esque “viola organista” has been attempted at least once.

Thanks to [Peter Ryseck] for this tip.