Overcomplicating The Magnetic Compass For A Reason

Some inventions are so simple that it’s hard to improve them. The magnetic compass is a great example — a magnetized needle, a bit of cork, and a bowl of water are all you need to start navigating the globe. So why in the world would you want to over-complicate things with something like this Earth inductor compass? Just because it’s cool, of course.

Now, the thing with complication is that it’s often instructive. The simplicity of the magnetic compass masks the theory behind its operation to some degree and completely fails to deliver any quantitative data on the Earth’s magnetic field. [tsbrownie]’s gadget is built from a pair of electric motors, one intact and one stripped of its permanent magnet stators. The two are mounted on a 3D printed frame and coupled by a long shaft made of brass, to magnetically isolate them as much as possible. The motor is powered by a DC supply while a digital ammeter is attached to the terminals on the stator.

When the motor spins, the stator at the other end of the shaft cuts the Earth’s magnetic lines of force and generates a current, which is displayed on the ammeter. How much current is generated depends on how the assembly is oriented. In the video below, [tsbrownie] shows that the current nulls out when oriented along the east-west axis, and reaches a maximum along north-south. It’s not much current — about 35 microamps — but it’s enough to get a solid reading.

Is this a practical substitute for a magnetic compass? Perhaps not for most use cases, but a wind-powered version of this guided [Charles Lindbergh]’s Spirit of St. Louis across the Atlantic in 1927 with an error of only about 10 miles over the trip, so there’s that. Other aircraft compasses take different approaches to the problem of nulling out the magnetic field of the plane.

Continue reading “Overcomplicating The Magnetic Compass For A Reason”

Mining And Refining: Mine Dewatering

From space, the most striking feature of our Pale Blue Dot is exactly what makes it blue: all that water. About three-quarters of the globe is covered with liquid water, and our atmosphere is a thick gaseous soup laden with water vapor. Almost everywhere you look there’s water, and even where there’s no obvious surface water, chances are good that more water than you could use in a lifetime lies just below your feet, and accessing it could be as easy as an afternoon’s work with a shovel.

And therein lies the rub for those who delve into the Earth’s depths for the minerals and other resources we need to function as a society — if you dig deep enough, water is going to become a problem. The Earth’s crust holds something like 44 million cubic kilometers of largely hidden water, and it doesn’t take much to release it from the geological structures holding it back and restricting its flow. One simple mineshaft chasing a coal seam or a shaft dug in the wrong place, and suddenly all the hard-won workings are nothing but flooded holes in the ground. Add to that the enormous open-pit mines dotting the surface of the planet that resemble nothing so much as empty lakes waiting to fill back up with water if given a chance, and the scale of the problem water presents to mining operations becomes clear.

Dewatering mines is a complex engineering problem, one that intersects and overlaps multiple fields of expertise. Geotechnical engineers work alongside mining engineers, hydrogeologists, and environmental engineers to devise cost-effective ways to control the flow of water into mines, redirect it when they can, and remove it when there’s no alternative.

Continue reading “Mining And Refining: Mine Dewatering”

New Study Looks At The Potential Carcinogenicity Of 3D Printing

We’ve all heard stories of the dangers of 3D printing, with fires from runaway hot ends or dodgy heated build plates being the main hazards. But what about the particulates? Can they actually cause health problems in the long run? Maybe, if new research into the carcinogenicity of common 3D printing plastics pans out.

According to authors [CheolHong Lim] and [ and that PLA was less likely to be hazardous than ABS. The study was designed to assess the potential carcinogenicity of both ABS and PLA particulates under conditions similar to what could be expected in an educational setting.

To do this, they generated particulates by heating ABS and PLA to extruder temperatures, collected and characterized them electrostatically, and dissolved them in the solvent DMSO. They used a cell line known as Balb/c, derived from fibroblasts of an albino laboratory mouse, to assess the cytotoxic concentration of each plastic, then conducted a comet assay, which uses cell shape as a proxy for DNA damage; damaged cells often take on a characteristically tailed shape that resembles a comet. This showed no significant DNA damage for either plastic.

But just because a substance doesn’t cause DNA damage doesn’t mean it can’t mess with the cell’s working in other ways. To assess this, they performed a series of cell transformation assays, which look for morphological changes as a result of treatment with a potential carcinogen. Neither ABS nor PLA were found to be carcinogenic in this assay. They also looked at the RNA of the treated cells, to assess the expression of genes related to carcinogenic pathways. They found that of 147 cancer-related genes, 113 were either turned up or turned down relative to controls. Finally, they looked at glucose metabolism as a proxy for the metabolic changes a malignant cell generally experiences, finding that both plastics increased metabolism in vitro.

Does this mean that 3D printing causes cancer? No, not by a long shot. But, it’s clear that under lab conditions, exposure to either PLA or ABS particulates seems to be related to some of the cell changes associated with carcinogenesis. What exactly this means in the real world remains to be seen, but the work described here at least sets the stage for further examination.

What does this all mean to the home gamer? For now, maybe you should at least crack a window while you’re printing.

Hackaday Links Column Banner

Hackaday Links: October 13, 2024

So far, food for astronauts hasn’t exactly been haute cuisine. Freeze-dried cereal cubes, squeezable tubes filled with what amounts to baby food, and meals reconstituted with water from a fuel cell don’t seem like meals to write home about. And from the sound of research into turning asteroids into astronaut food, things aren’t going to get better with space food anytime soon. The work comes from Western University in Canada and proposes that carbonaceous asteroids like the recently explored Bennu be converted into edible biomass by bacteria. The exact bugs go unmentioned, but when fed simulated asteroid bits are said to produce a material similar in texture and appearance to a “caramel milkshake.” Having grown hundreds of liters of bacterial cultures in the lab, we agree that liquid cultures spun down in a centrifuge look tasty, but if the smell is any indication, the taste probably won’t live up to expectations. Still, when a 500-meter-wide chunk of asteroid can produce enough nutritionally complete food to sustain between 600 and 17,000 astronauts for a year without having to ship it up the gravity well, concessions will likely be made. We expect that this won’t apply to the nascent space tourism industry, which for the foreseeable future will probably build its customer base on deep-pocketed thrill-seekers, a group that’s not known for its ability to compromise on creature comforts.

Continue reading “Hackaday Links: October 13, 2024”

A Homebrew Gas Chromatograph That Won’t Bust Your Budget

Chances are good that most of us will go through life without ever having to perform gas chromatography, and if we do have the occasion to do so, it’ll likely be on a professional basis using a somewhat expensive commercial instrument. That doesn’t mean you can’t roll your own gas chromatograph, though, and if you make a few compromises, it’s not even all that expensive.

At its heart, gas chromatography is pretty simple; it’s just selectively retarding the movement of a gas phase using a solid matrix and measuring the physical or chemical properties of the separated components of the gas as they pass through the system. That’s exactly what [Markus Bindhammer] has accomplished here, in about the simplest way possible. Gas chromatographs generally use a carrier gas such as helium to move the sample through the system. However, since that’s expensive stuff, [Markus] decided to use room air as the carrier.

The column itself is just a meter or so of silicone tubing packed with chromatography-grade silica gel, which is probably the most expensive thing on the BOM. It also includes an injection port homebrewed from brass compression fittings and some machined acrylic blocks. Those hold the detectors, an MQ-2 gas sensor module, and a thermal conductivity sensor fashioned from the filament of a grain-of-wheat incandescent lamp. To read the sensors and control the air pump, [Markus] employs an Arduino Uno, which unfortunately doesn’t have great resolution on its analog-to-digital converter. To fix that, he used the ubiquitous HX7111 load cell amplifier to read the output from the thermal conductivity sensor.

After purging the column and warming up the sensors, [Markus] injected a sample of lighter fuel and exported the data to Excel. The MQ-2 clearly shows two fractions coming off the column, which makes sense for the mix of propane and butane in the lighter fuel. You can also see two peaks in the thermal conductivity data from a different fuel containing only butane, corresponding to the two different isomers of the four-carbon alkane.

[Markus] has been on a bit of a tear lately; just last week, we featured his photochromic memristor and, before that, his all-in-one electrochemistry lab.

Continue reading “A Homebrew Gas Chromatograph That Won’t Bust Your Budget”

Hackaday Podcast Episode 292: Stainless Steel Benchies, Lego Turing Machines, And A Digital Camera Made Of Pure DIY

Here we are in October, improbably enough, and while the leaves start to fall as the goblins begin to gather, Elliot and Dan took a break from the madness to talk about all the wonderful hacks that graced our pages this week. If there was a theme this week, it was long-term projects, like the multiple years one hacker spent going down dead ends in the quest for DIY metal 3D printing. Not to be outdone, another hacker spent seven years building a mirrorless digital camera that looks like a commercial product. And getting a solderless PCB to do the blinkenlight thing took a long time too.

Looking to eliminate stringing in your 3D prints? Then you’ll want to avoid the “pause and attach” approach, which intentionally creates strings in your prints. Wondering if you can 3D print bearings? You can, but you probably shouldn’t unless you have a particular use in mind. And what happens when you have an infinitely large supply of Lego? Why, you build a Turing machine on steroids, of course.

Finally, we take a look at this week’s “Can’t-Miss” articles with a look into plastic recycling and why we can’t have nice things yet, and we take a trip out into orbit and examine the ins and outs of Lagrange points.

And a little mea culpa from the editing desk: Sorry the podcast is coming out late this week. Audacity ate my files. If you’re ever in a similar circumstance, you can probably halfway save your bacon with audacity-project-tools. Ask me how I know.

 

Download the zero-calorie MP3.

Continue reading “Hackaday Podcast Episode 292: Stainless Steel Benchies, Lego Turing Machines, And A Digital Camera Made Of Pure DIY”

Photochromic Dye Makes Up This Novel Optical Memristor

Despite being much in the zeitgeist lately, we have to confess to still being a bit foggy about exactly what memristors are. The “mem” part of their name seems to be the important bit, implying a memory function, but the rest of the definition seems somewhat negotiable — enough so that you can make a memristor from a bit of photochromic dye.

Now, we’ll leave the discussion of whether [Markus Bindhammer]’s rather complex optical memory cell officially counts as a memristor to the comments below, and just go through the technical details here. The heart of this experimental device is a photochromic dye known as cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene, mercifully shortened to CMTE, which has the useful property of having two stable states. Transitioning from the open state to the closed state occurs when UV light shines upon it, while switching back to the closed state is accomplished with a pulse of green light. Absent the proper wavelength of light, both states are stable, making non-volatile information storage possible.

To accomplish this trick, [Markus] filled a quartz cuvette with a little CMTE-doped epoxy resin. Inside a light-tight enclosure, two lasers — one at 405 nm wavelength, the other at 532 nm — are trained on the cuvette through a dichroic mirror. On the other side of the CMTE resin, he placed a VEML7700 high-accuracy ambient light sensor. An Arduino Nano reads the light sensor and controls the lasers. Writing and erasing are accomplished by turning on the proper laser for a short amount of time; reading the state of the cell involves a carefully timed pulse from the 405 nm laser followed by a 532 nm pulse and watching the output of the sensor.

Is a one-bit memory device that uses a dye that goes for €300 per gram and a pair of laser diodes practical? Of course not, but it’s still pretty cool, and we appreciate all the effort and expense [Markus] went to with this one. Now, if you want some fuel for the “It’s not a memristor” fire, memristors might not even be a thing.

Continue reading “Photochromic Dye Makes Up This Novel Optical Memristor”