Hackaday Europe 2025 Tickets On Sale, And CFP Extended Until Friday

We’re opening up shop for Hackaday Europe, so get your tickets now! We’ve managed to get the ticket price down a bit this year, so you can join in all the fun for $145. And if you’re reading this right now, snap up one of the $75 early bird tickets as fast as you can.

Hackaday Europe is going down again in Berlin this year, on March 15th and 16th at MotionLab. It’s going to be a day and a half of presentations, lightning talks, badge hacking, workshops, and more. This is where Hackaday hangs out in person, and it’s honestly just a great time – if your idea of a great time is trading favorite PCB design tricks, crafting crufty code, and generally trading tales of hardware derring-do.

In short, it’s the best of Hackaday, live and in person. Throughout the weekend, all the meals are catered, we’ve got live music at night, and the soldering irons will be warmed up for you. It’s going to be great!

If you’re in town on Friday the 14th, we’ll be meeting up in the evening to get together over some pre-event food and drink, sponsored by Crowd Supply. It’s a nice opportunity to break the ice, get to know the people you’re going to be spending the next 48 hours with, and just mingle without missing that great talk or wonderful workshop. Continue reading “Hackaday Europe 2025 Tickets On Sale, And CFP Extended Until Friday”

Second CNC Machine Is Twice As Nice

[Cody Lammer] built a sweet CNC router. But as always, when you build a “thing”, you inevitably figure out how to build a better “thing” in the process, so here we are with Cody’s CNC machine v2.0. And it looks like CNC v1.0 was no slouch, so there’s no shortage of custom milled aluminum here.

The standout detail of this build is that almost all of the drive electronics and logic are hidden inside the gantry itself, making cabling a lot less of a nightmare than it usually is. While doing this was impossible in the past, because everything was just so bulky, he manages to get an ESP32 and the stepper drivers onto a small enough board that it can move along with the parts that it controls. FluidNC handles the G-Code interpretation side of things, along with providing a handy WiFi interface. This also allows him to implement a nice jog wheel and a very handy separate position and status indicator LCD on the gantry itself.

When you’re making your second CNC, you have not only the benefit of hindsight, but once you’ve cut all the parts you need, you also have a z-axis to steal and just bolt on. [Cody] mentions wanting a new z-axis with more travel – don’t we all! – but getting the machine up and running is the first priority. It’s cool to have that flexibility.

All in all, this is a very clean build, and it looks like a great improvement over the old machine. Of course, that’s the beauty of machine tools: they are the tools that you need to make the next tool you need. Want more on that subject? [Give Quinn Dunki’s machining series a read].

Fraens’ New Loom And The Limits Of 3D Printing

[Fraens] has been re-making industrial machines in fantastic 3D-printable versions for a few years now, and we’ve loved watching his creations get progressively more intricate. But with this nearly completely 3D-printable needle loom, he’s pushing right up against the edge of the possible.

The needle loom is a lot like the flying shuttle loom that started the Industrial Revolution, except for making belts or ribbons. It’s certainly among the most complex 3D-printed machines that we’ve ever seen, and [Fraens] himself says that it is pushing the limits of what’s doable in plastic — for more consistent webbing, he’d make some parts out of metal. But that’s quibbling; this thing is amazing.

There are mechanical details galore here. For instance, check out the cam-chain that raises, holds, and lowers arms to make the pattern. Equally important are the adjustable friction brakes on the rollers that hold the warp, that create a controlled constant tension on the strings.  (Don’t ask us, we had to Wikipedia it!) We can see that design coming in handy in some of our own projects.

On the aesthetic front, the simple but consistent choice of three colors for gears, arms, and frame make the build look super tidy. And the accents of two-color printing on the end caps is just the cherry on the top.

This is no small project, with eight-beds-worth of printed parts, plus all the screws, bearings, washers, etc. The models are for pay, but if you’re going to actually make this, that’s just a tiny fraction of the investment, and we think it’s going to a good home.

We are still thinking of making [Fraens]’s vibratory rock tumbler design, but check out all of his work if you’re interested in nice 3D-printed mechanical designs.

Continue reading “Fraens’ New Loom And The Limits Of 3D Printing”

Blinkenlights-First Retrocomputer Design

[Boz] wants to build a retrocomputer, but where to start? You could start with the computery bits, like say the CPU or the bus architecture, but where’s the fun in that? Instead, [Boz] built a righteous blinkenlights array.

What’s cool about this display is that it’s ready to go out of the box. All of the LEDs are reverse-mount and assembled by the board maker. The 19″ 2U PCBs serve as the front plates, so [Boz] was careful not to use any through-hole parts, which also simplified the PCB assembly, of course. Each slice has its own microcontroller and a few shift registers to get the bits lit up, and that’s all there is to it. They take incoming data at 9600 baud and output blinkiness.

Right now it pulls out its bytes from his NAS. We’re not sure which bytes, and we think we see some counters in there. Anyway, it doesn’t matter because it’s so pretty. And maybe someday the prettiness will lure [Boz] into building a retrocomputer to go under it. But honestly, we’d just relax and watch the blinking lights.

Continue reading “Blinkenlights-First Retrocomputer Design”

In Praise Of Simple Projects

Hackaday was at Chaos Communication Congress last week, and it’s one of those big hacker events that leaves you with so much to think about that I’m still processing it. Just for scope, the 38th CCC is a hacker event with about 15,000 attendees from all around Europe, and many from even further. If I were to characterize the crowd on a hardware-software affinity scale, I would say that it skews heavily toward the software side of the hacker spectrum.

What never ceases to amaze me is that there are a couple of zones that are centered on simple beginner soldering and other PCB art projects that are completely full 20 hours of the day. I always makes me wonder how it is possible to have this many hackers who haven’t picked up a soldering iron. Where do all these first-timers come from? I think I’m in a Hackaday bubble where not only does everyone solder at least three times a day, some of us do it with home-made reflow ovens or expensive microscopes.

But what this also means is that there’s tremendous reach for interesting, inviting, and otherwise cool beginner hardware projects. Hands-on learning is incredibly addictive, and the audience for beginner projects is probably ten times larger than that for intermediate or advanced builds. Having watched my own son putting together one of these kits, I understand the impact they can have personally, but it’s worth noting that the guy next to him was certainly in his mid-30s, and the girl across the way was even a few years younger than my son.

So let’s see some cool beginner projects! We’d love to feature more projects that could lure future hackers to the solder-smoky side.

Resolution: Share Inspiration

It’s been a good 2025 so far! I just got back from Chaos Communication Congress, which is easily my favorite gigantic hacker conference of the year. (Partisan Hackaday pride puts Supercon up as my favorite moderate-sized conference, naturally.) CCC is huge. And it’s impossible to leave an event like that without your to-hack list at least doubling in length.

And then I got back home and started prepping up for the podcast, which meant reading through about a week’s worth of Hackaday in a single sitting. Which in turn adds a few more projects to the list. Thanks for that, y’all!

All of this was possible because people who do crazy nerdy things decided to share their passions with everyone. So in the spirit of the New Year, I’m going to try to document my own projects a little bit better, because if people can’t see what you’re doing, they can’t get inspired by it.

And while it’s my day job, it’s not yours, so I’d like to encourage you to point out a cool project if you see it as well. Because what’s better than inspiring other hackers to pick up the torch on a project you love?

38C3: Taking Down The Power Grid Over Radio

You know how you can fall down a rabbit hole when you start on a project? [Fabian Bräunlein] and [Luca Melette] were looking at a box on a broken streetlamp in Berlin. The box looked like a relay, and it contained a radio. It was a Funkrundsteueremfänger – a radio controlled power controller – made by a company called EFR. It turns out that these boxes are on many streetlamps in many cities, and like you do, they thought about how cool it would be to make lights blink, but on a city-wide basis. Haha, right? So they bought a bunch of these EFR devices on the used market and started hacking.

They did a lot of background digging, and found out that they could talk to the devices, both over their local built-in IR port, but also over radio. Ironically, one of the best sources of help they found in reversing the protocol was in the form of actually pressing F1 in the manufacturer’s configuration application – a program’s help page actually helped someone! They discovered that once they knew some particulars about how a node was addressed, they could turn on and off a device like a street lamp, which they demo with a toy on stage. So far, so cute.

But it turns out that these boxes are present on all sorts of power consumers and producers around central Europe, used to control and counteract regional imbalances to keep the electrical grid stable. Which is to say that with the same setup as they had, maybe multiplied to a network of a thousand transmitters, you could turn off enough power generation, and turn on enough load, to bring the entire power grid down to its knees. Needless to say, this is when they contacted both the manufacturer and the government.

The good news is that there’s a plan to transition to a better system that uses authenticated transmissions, and that plan has been underway since 2017. The bad news is that progress has been very slow, and in some cases stalled out completely. The pair view their work here as providing regulators with some extra incentive to help get this important infrastructure modernization back on the front burner. For instance, it turns out that large power plants shouldn’t be using these devices for control at all, and they estimate that fixing this oversight could take care of most of the threat with the least effort.

National power grids are complicated machines, to say the least, and the impact of a failure can be very serious. Just take a look at what happened in 2003 in the US northeast, for instance. And in the case of real grid failure, getting everything back online isn’t as simple a just turning the switches back on again. As [Fabian] and [Luca] point out here, it’s important to discover and disclose when legacy systems put the grid in potential danger.