Give Your Animal Crossing Villagers The Gift Of Linux

If you’ve played any of the versions of Nintendo’s Animal Crossing over the years, you’ll know that eventually you get to the point where you’ve maxed out your virtual house and filled it with all the furniture you could possibly want — which is arguably as close to “winning” the game as you can get.

But now thanks to the work of [decrazyo] there’s a piece of furniture that you can add to your Animal Crossing house that will never get old: an x86 emulator that boots Linux. As explained in the video below, this trick leverages the fact that Nintendo had already built a highly accurate Nintendo Entertainment System (NES) emulator into Animal Crossing on the GameCube, which could be used to run a handful of classic games from within the player’s virtual living room. But it turns out that you can get that emulator to load a user-provided ROM from the GameCube’s memory card, which opens the doors to all sorts of mischief.

Continue reading “Give Your Animal Crossing Villagers The Gift Of Linux”

Space Monitor Points Out Celestial Objects

Logically we understand that the other planets in the solar system, as well as humanity’s contributions to the cosmos such as the Hubble Space Telescope and the International Space Station, are zipping around us somewhere — but it can be difficult to conceptualize. Is Jupiter directly above your desk? Is the ISS currently underneath you?

If you’ve ever found yourself wondering such things, you might want to look into making something like Space Monitor. Designed by [Kevin Assen], this little gadget is able to literally point out the locations of objects in space. Currently it’s limited to the ISS and Mars, but adding new objects to track is just a matter of loading in the appropriate orbital data.

In addition to slewing around its 3D printed indicator, the Space Monitor also features a round LCD that displays the object currently being tracked, as well as the weather. Reading through the list of features and capabilities of the ESP32-powered device, we get the impression that [Kevin] is using it as a sort of development platform for various concepts. Features like remote firmware updates and the ability to point smartphones to the device’s configuration page via on-screen QR aren’t necessarily needed on a personal-use device, but its great practice for when you do eventually send one of your creations out into the scary world beyond your workbench.

If you’re interested in something a bit more elaborate, check out this impressive multi-level satellite tracker we covered back in 2018.

Continue reading “Space Monitor Points Out Celestial Objects”

Get Ready For KiCAD 9!

Rev up your browsers, package managers, or whatever other tool you use to avail yourself of new software releases, because the KiCAD team have announced that barring any major bugs being found in the next few hours, tomorrow should see the release of version 9 of the open source EDA suite. Who knows, depending on where you are in the world that could have already happened when you read this.

Skimming through the long list of enhancements brought into this version there’s one thing that strikes us; how this is now a list of upgrades and tweaks to a stable piece of software rather than essential features bringing a rough and ready package towards usability. There was a time when using KiCAD was a frustrating experience of many quirks and interface annoyances, but successive versions have improved it beyond measure. We would pass comment that we wished all open source software was as polished, but the fact is that much of the commercial software in this arena is not as good as this.

So head on over and kick the tires on this new KiCAD release, assuming that it passes those final checks. We look forward to the community’s verdict on it.

Integrated Micro Lab Keeps Track Of Ammonia In The Blood

We’ve all got our health-related crosses to bear, and even if you’re currently healthy, it’s only a matter of time before entropy catches up to you. ForĀ [Markus Bindhammer], it caught up to him in a big way: liver disease, specifically cirrhosis. The disease has a lot of consequences, none of which are pleasant, like abnormally high ammonia concentration in the blood. So naturally, [Markus] built an ammonia analyzer to monitor his blood.

Measuring the amount of ammonia in blood isn’t as straightforward as you think. Yes, there are a few cheap MEMS-based sensors, but they tend to be good only for qualitative measurements, and other solid-state sensors that are more quantitative tend to be pretty expensive since they’re mostly intended for industrial applications. [Marb]’s approach is based on the so-called Berthelot method, which uses a two-part reagent. In the presence of ammonia (or more precisely, ammonium ions), the reagent generates a dark blue-green species that absorbs light strongly at 660 nm. Measuring the absorbance at that wavelength gives an approximation of the ammonia concentration.

[Marb]’s implementation of this process uses a two-stage reactor. The first stage heats and stirs the sample in a glass tube using a simple cartridge heater from a 3D printer head and a stirrer made from a stepper motor with a magnetic arm. Heating the sample volatilizes any ammonia in it, which mixes with room air pumped into the chamber by a small compressor. The ammonia-laden air moves to the second chamber containing the Berthelot reagent, stirred by another stepper-powered stir plate. A glass frit diffuses the gas into the reagent, and a 660-nm laser and photodiode detect any color change. The video below shows the design and construction of the micro lab along with some test runs.

We wish [Markus] well in his journey, of course, especially since he’s been an active part of our community for years. His chemistry-related projects run the gamut from a homebrew gas chromatograph to chemical flip flops, with a lot more to boot.

Continue reading “Integrated Micro Lab Keeps Track Of Ammonia In The Blood”

A Forgotten Consumer PC Becomes A Floating Point Powerhouse

[Michael Wessel] found some of his old DOS 3D graphics software and tried to run it on an 8088 PC. The tale of adding an 8087 co-processor to speed up the rendering was anything but straightforward, resulting in a useful little project.

There was a point around the end of the 1980s when the world of PCs had moved on to the 386, but the humble 8086 and 8088 hung around at the consumer end of the market. For Europeans that meant a variety of non-standard machines with brand names such as Amstrad and Schneider, and even surprisingly, later on Sinclair and Commodore too.

Of these the Schneider Euro PC was an all-in-one design reminiscent of an Amiga or Atari ST, packing a serviceable 8088 PC with a single 3.5″ floppy drive. A cheap machine like this was never thought to need an 8087, and lacked the usual socket on the motherboard, so he made a small PCB daughter board for the 8088 socket with space for both chips.

It’s a surprisingly simple circuit, as obviously the two chips were meant to exist together. It certainly had the desired effect on his frame rate, though we’re not sure how many other Euro PC users will need it. It does make us curious though, as to how quickly a modern microcontroller could emulate an 8087 for an even faster render time. Meanwhile if you’re curious about the 8087, of course [Ken Shirriff] has taken a look at it.

Probably The Most Esoteric Commodore 64 Magazine

The world of computer enthusiasts has over time generated many subcultures and fandoms, each of which has in turn spawned its own media. [Intric8] has shared the tale of his falling down a rabbit hole as he traced one of them, a particularly esoteric disk magazine for the Commodore 64. The disks are bright yellow, and come with intricate home-made jackets and labels. Sticking them into a 1541 drive does nothing, because these aren’t standard fare, instead they require GEOS and a particularly upgraded machine. They appear at times in Commodore swap meets, and since they formed a periodical there are several years’ worth to collect that extend into the 2000s, long after the heyday of the 64.

Picking up nuggets of information over time, he traces them to Oregon, and the Astoria Commodore User Group, and to [Lord Ronin], otherwise known as David Mohr. Sadly the magazine ended with his death in 2009, but until then he produced an esoteric selection of stories, adventure games, and other software for surely one of the most exclusive computer clubs in existence. It’s a fascinating look into computer culture from before the Internet, even though by 2009 the Internet had well and truly eclipsed it, when disks like these were treasured for the information they contained. So if you find any of these yellow Penny Farthing disks, make sure that they or at least their contents are preserved.

Surprisingly, this isn’t the only odd format disk magazine we’ve seen.

Measuring Local Variances In Earth’s Magnetic Field

Although the Earth’s magnetic field is reliable enough for navigation and is also essential for blocking harmful solar emissions and for improving radio communications, it’s not a uniform strength everywhere on the planet. Much like how inconsistencies in the density of the materials of the planet can impact the local gravitational force ever so slightly, so to can slight changes impact the strength of the magnetic field from place to place. And it doesn’t take too much to measure this impact on your own, as [efeyenice983] demonstrates here.

To measure this local field strength, the first item needed is a working compass. With the compass aligned to north, a magnet is placed with its poles aligned at a right angle to the compass. The deflection angle of the needle is noted for varying distances of the magnet, and with some quick math the local field strength of the Earth’s magnetic field can be calculated based on the strength of the magnet and the amount of change of the compass needle when under its influence.

Using this method, [efeyenice983] found that the Earth’s magnetic field strength at their location was about 0.49 Gauss, which is well within 0.25 to 0.65 Gauss that is typically found on the planet’s surface. Not only does the magnetic field strength vary with location, it’s been generally decreasing in strength on average over the past century or so as well, and the poles themselves aren’t stationary either. Check out this article which shows just how much the poles have shifted over the last few decades.