Picture of a monitor with a fake "ransomware" banner on it, and a PC with the ESP32 VGA devboard mounted into it in the foreground

ESP32 Pretends To Be GPU; Gives You A Ransomware Scare

Sometimes a piece of hardware meets a prank idea, and that’s how the fun Hackaday articles are born. [AnotherMaker] shows us some harmless entertainment at the expense of an IT enthusiast in your life – programming an ESP32-powered devboard with a VGA output to show an ever-feared “all your files are encrypted” screen on a monitor connected to it. The ASCII text in its 8-bit glory helps sell this prank, making it look exactly like a BIOS-hijacking piece of malware it claims to be; akin to UIs of the past that skilled hackers would whip up in x86 assembly. The devboard’s integration into a PCI card backplate is a cherry on top, a way to seamlessly integrate this into a PC case, making it look not particularly different from an old graphics card. In such a configuration, we don’t doubt that this would be a head-scratcher to a certain kind of an IT department worker.

If you already have someone in mind as a target for this prank, you’re in luck, since [AnotherMaker] has shared his source code, too, and all you need is a ESP32 with a VGA port set up. You can get the same devboard, or you can even solder it all together with an ESP32 breakout and resistors, if you’re on a time or money budget, since the schematics for the LilyGO devboard are public. Not all devboards gets such a fun application, but it’s always fun to see when someone thinks of one – a perfect prank scenario that calls for a very specific devboard.

Wondering how it’s even possible to output VGA from the ESP32? We’ve covered this in the past – like this R&D project done by [bitluni], who then went ahead and expanded on it by connecting six displays at once. If you’ve connected your ESP32 to a VGA port and ran some test sketches, a UI library will help you upgrade your idea into a ready project in no time.

Continue reading “ESP32 Pretends To Be GPU; Gives You A Ransomware Scare”

Animated Pumpkins Sing And Scare On Halloween

The animated video combined with the 3D-printed prop makes for an excellent effect.

Carving Jack O’ Lanterns out of pumpkins is a favorite Hallowe’en tradition for many, but relying on candles and knives is decidedly low-tech. [Lewis] of [DIY Machines] decided to whip up something a little more animated to scare the local trick-or-treaters instead.

The build consists of 3D printed pumpkins, lit from behind with a low-cost projector. Driven by a Raspberry Pi, the projector plays video files that project animated faces onto the pumpkins. The effect is great, giving the illusion of a real anthropomorphic Jack O’ Lantern sitting on your very porch. To control the system, a series of arcade buttons are hooked up to the Raspberry Pi allowing visitors to activate a song, a scare, or a story.

It’s a fun build that is a great way to add some interactivity to your Hallowe’en decorations. If you want to take your work up a notch, consider projecting on to your whole house. Video after the break.

Continue reading “Animated Pumpkins Sing And Scare On Halloween”

Projector And NES Mini Hide Out Inside The Real Thing

Taking a page out of the Xzibit Engineering Handbook, [Geeksmithing] recently decided that the gutted carcass of an original Nintendo Entertainment System would make a perfect home for…a smaller NES. Well, that and two wireless controllers. Plus a projector. Oh, and batteries so it can be used on the go. Because really, at that point, why not?

The video after the break starts with a cleverly edited version of a legitimate NES commercial from the gaming glory days of the 1980s, and segues into an rundown of all the modern hardware [Geeksmithing] crammed into the case of this legendary console. It helps that the official NES Classic used for the project is so much smaller than its more than thirty year old predecessor, leaving plenty of room inside to get creative. We particularly like the dual wireless controllers which are conveniently hiding inside the original cartridge slot.

Frankly, that alone would have made this project worthwhile in our book, but [Geeksmithing] didn’t stop there. He also added in a pico projector that’s normally covered up by the black facia on the rear of the console, complete with a “kickstand” to tip the system up to the appropriate angle. Continuing with the theme of enabling ad-hoc NES play sessions, he also packed in enough batteries to keep the system running for a respectable amount of time. There’s even put an inductive charging coil in the bottom of the system so he can top off the batteries just by dropping the system on a modified SNES mousepad.

Last time [Geeksmithing] checked in, he was embedding a Raspberry Pi into a Super Mario Thwomp that was made from real concrete. We can’t wait to see what he comes up with next.

Continue reading “Projector And NES Mini Hide Out Inside The Real Thing”

Turn Your Car Into A Simulator

Video games, while entertaining to be sure, are a great way to experience things that could not easily be recreated in real life. Shooting aliens on a giant ring in space is an obvious example, but there are some more realistic examples that video games make much more accessible, such as driving a race car. You can make that experience as realistic as you want, too, and can even go as far as using a real car as your controller.

All modern cars use a communication system to allow their various modules to talk to one another. Fuel injection, throttle position, pedal positions, steering wheel angle, and climate control systems can all communicate on the CAN bus, and by tapping into that information the car can be used as a controller for a video game. Once you plug in to the OBD-II port on a car, you’ll need a piece of software to decode all of that information. [Andrew] uses uinput, a tool that allows Linux machines to take any input signal and map it in any way that can be programmed.

The build also includes the use of an integrated pico projector, allowing the car to be parked and turned into a simulator at any time. It’s similar to another project which used a Mazda instead of a Chevrolet Volt, but it just goes to show how straightforward it can be to take information from the CAN bus of a modern car.

Continue reading “Turn Your Car Into A Simulator”

The Vectrex Projector We’ve Been Waiting For

Unlike most old consoles, the Vectrex is unique for having a vector-based display. This gives it a very different look to most of its contemporaries, and necessitated a built-in display, as regular televisions aren’t built to take vector signals. Not one to be limited to the stock screen size, [Arcade Jason] decided the Vectrex needed a projection upgrade, and built exactly that.

The build relies on a lens that [Jason] salvaged from an old rear-projection TV. These units used CRTs with big lenses which projected the image onto a screen. That’s precisely what is happening here, with a vector display replacing the CRT used in the original TV. The vector display itself used here is a tube from a small black and white TV set, which [Jason] modified to use a Vectrex yoke, making it capable of vector operation.

Through some modification and careful assembly, [Jason] was rewarded with a wall-sized display for his Vectrex console. This is demonstrated with some beautiful glowing vector demos, accompanied with appropriate bleep-bloop music, as was the style at the time. The Cantina band is a particular highlight.

We’ve seen [Jason]’s vector hacks before, too – like this Asteroids machine modified to display in color. Video after the break.

Continue reading “The Vectrex Projector We’ve Been Waiting For”

Pocket Projector Uses Raspberry Pi

Who doesn’t want a pocket protector projector? Nothing will impress a date more than being able to whip out a PowerPoint presentation of your latest trip to the comic book convention. The key to [MickMake] build is the $100 DLP2000EVM evaluation module from Texas Instruments. This is an inexpensive light engine, and perfect for rolling your own projector. You can see the result in the video below.

If you don’t need compactness, you could drive the module with any Rasberry Pi or even a regular computer. But to get that pocket form factor, a Pi Zero W fits the bill. A custom PCB from [MickMake] lets the board fit in with the DLP module in a very small form factor.

Continue reading “Pocket Projector Uses Raspberry Pi”

Roll Up Your Sleeve, Watch A Video With This Smart Watch Forearm Projector

We’re all slowly getting used to the idea of wearable technology, fabulous flops like the creepy Google Glass notwithstanding. But the big problem with tiny tech is in finding the real estate for user interfaces. Sure, we can make it tiny, but human fingers aren’t getting any smaller, and eyeballs can only resolve so much fine detail.

So how do we make wearables more usable? According to Carnegie-Mellon researcher [Chris Harrison], one way is to turn the wearer into the display and the input device (PDF link). More specifically, his LumiWatch projects a touch-responsive display onto the forearm of the wearer. The video below is pretty slick with some obvious CGI “artist’s rendition” displays up front. But even the somewhat limited displays shown later in the video are pretty impressive. The watch can claim up to 40-cm² of the user’s forearm for display, even at the shallow projection angle offered by a watch bezel only slightly above the arm — quite a feat given the irregular surface of the skin. It accomplishes this with a “pico-projector” consisting of red, blue, and green lasers and a pair of MEMS mirrors. The projector can adjust the linearity and brightness of the display to provide a consistent image across the uneven surface. An array of 10 time-of-flight sensors takes care of watching the display area for touch input gestures. It’s a fascinating project with a lot of potential, but we wonder how the variability of the human body might confound the display. Not to mention the need for short sleeves year round.

Need some basics on the micro-electrical mechanic systems (MEMS) behind the pico-projector in this watch? We’ve got a great primer on these microscopic machines.

Continue reading “Roll Up Your Sleeve, Watch A Video With This Smart Watch Forearm Projector”