Reflow Solder Your Micro SD To Ensure It Doesnt Go Anywhere

SD cards are great inexpensive storage for your embedded project. Using SPI,  they only take a few wires to hook up, and every micro-controller has a FAT file system interface to drop in your project. Problem with SD cards are the connectors.

Usually connectors cost more than the brains of your project,  and the friction fit, spring loaded contacts are not ideal for temperature swings, humidity and high vibration applications. Wouldn’t it be nice if you could just solder the thing down, especially if you know you are never going to remove it?

[Timothée] decided to try and succeeded in reflow soldering a Micro SD card direct to a breakout board. While starting as a what if experiment, the PCB was laid out in Ki-Cad and sent off to a fab. Once returned the Micro SD was fluxed, tinned and fluxed again, then reflowed using an IR setup.

The end result is a handy breakout board where you never have to worry about someone swiping the card to jam in their camera, and is ready for any breadboard project.

Preventing A Mess With The Weller WDC Solder Containment Pocket

Resetting the paraffin trap. (Credit: MisterHW)
Resetting the paraffin trap. (Credit: MisterHW)

Have you ever tipped all the stray bits of solder out of your tip cleaner by mistake? [MisterHW] is here with a bit of paraffin wax to save the day.

Hand soldering can be a messy business, especially when you wipe the soldering iron tip on those common brass wool bundles that have largely come to replace moist sponges. The Weller Dry Cleaner (WDC) is one of such holders for brass wool, but the large tray in front of the opening with the brass wool has confused many as to its exact purposes. In short, it’s there so that you can slap the iron against the side to flick contaminants and excess solder off the tip.

Along with catching some of the bits of mostly solder that fly off during cleaning in the brass wool section, quite a lot of debris can be collected this way. Yet as many can attest to, it’s quite easy to flip over brass wool holders and have these bits go flying everywhere.

The trap in action. (Credit: MisterHW)
The trap in action. (Credit: MisterHW)

That’s where [MisterHW]’s pit of particulate holding comes into play, using folded sheet metal and some wax (e.g. paraffin) to create a trap that serves to catch any debris that enters it and smother it in the wax. To reset the trap, simply heat it up with e.g. the iron and you’ll regain a nice fresh surface to capture the next batch of crud.

As the wax is cold when in use, even if you were to tip the holder over, it should not go careening all over your ESD-safe work surface and any parts on it, and the wax can be filtered if needed to remove the particulates. When using leaded solder alloys, this  setup also helps to prevent lead-contamination of the area and generally eases clean-up as bumping or tipping a soldering iron stand no longer means weeks, months or years of accumulations scooting off everywhere.

The New Raspberry Pi 500+: Better Gaming With Less Soldering Required

When Raspberry Pi released the Pi 500, as essentially an RPi 5 integrated into a chiclet keyboard, there were rumors based on the empty spots on the PCB that a better version would be released soon. This turned out to be the case, with [Jeff Geerling] now taking the new RPi 500+ to bits for some experimentation and keyboard modding.

The 500’s case was not designed to be opened, but if you did, you’d find that there was space allocated for a Power-Over-Ethernet section as well as an M.2 slot, albeit with all of the footprints unpopulated. Some hacking later and enterprising folk found that soldering the appropriate parts on the PCB does in fact enable a working M.2 slot. What the 500+ thus does is basically do that soldering work for you, while sadly not offering a PoE feature yet without some DIY soldering.

Perhaps the most obvious change is the keyboard, which now uses short-travel mechanical switches – with RGB – inside an enclosure that is now fortunately easy to open, as you may want to put in a different NVMe drive at some point. Or, if you’re someone like [Jeff] you want to use this slot to install an M.2 to Oculink adapter for some external GPU action.

After some struggling with eGPU devices an AMD RX 7900 XT was put into action, with the AMD GPU drivers posing no challenge after a kernel recompile. Other than the Oculink cable preventing the case from closing and also losing the M.2 NVMe SSD option, it was a pretty useful mod to get some real gaming and LLM action going.

With the additions of a presoldered M.2 slot and a nicer keyboard, as well as 16 GB RAM, you have to decide whether the $200 asking price is worth it over the $90 RPi 500. In the case of [Jeff] his kids will have to make do with the RPi 500 for the foreseeable future, and the RPi 400 still finds regular use around his studio.

Continue reading “The New Raspberry Pi 500+: Better Gaming With Less Soldering Required”

Soldered RAM Upgrades Finally Available For Mac-PPC

In the retrocomputing world, [DosDude1] is a name spoken with more than a little respect. He’s back again with a long-awaited hack for PowerPC Macintosh: soldered RAM upgrades!

[DosDude1] is no stranger to soldering his way to more storage– upgrading the SSD on an M4 Mac Mini, or doubling  the VRAM on an old GPU. For a PPC Mac, though, it is not enough just to solder more RAM onto the board; if that’s all it was, we’d have been doing it 20 years ago. Once the RAM is in place, you have to have some way to make sure the computer knows the RAM is in place. For a WinTel machine, getting that information to the BIOS can be as easy as plugging in the right resistors. Continue reading “Soldered RAM Upgrades Finally Available For Mac-PPC”

Using an SMD capacitor as a clip for flash media on a circuit board.

SMD Capacitor Doubles As Cheap SD Card Latch

Here’s a clever hack. Simple, elegant, and eminently cost-effective: using an SMD capacitor to hold your flash media in place!

This is a hack that can pretty much be summed up with just the image at the top of the page — a carefully placed SMD capacitor soldered to a routed tab makes for an extremely cost effective locking mechanism for the nearby SD card slot. There’s just enough flexibility to easily move the capacitor when its time to insert or eject your media.

It’s worth noting that the capacitor in this example doesn’t even appear to be electrically connected to anything. But there’s also no reason you couldn’t position one of the capacitors in your existing bill of materials (BOM). This form of mechanical support will be much cheaper than special purpose clips or mounts. Not a big deal for low-volume projects, but if you’re going high-volume this is definitely something to keep in mind.

If you’re just getting started with SMD capacitors then one of the first things to learn is how to solder them. Also, if you’re hoping to salvage them then try to look for newer equipment which is more likely to have SMD components than through-hole. If you’re planning to use your capacitors for… “capacitance” (how quaint), you can start by learning the basics. And if you want to know everything you can learn about the history of capacitors, too.

Thanks to [JohnU] for writing in to let us know about this one. Have your own natty hacks? Let us know on the tipsline!

Hacker Tactic: ESD Diodes

A hacker’s view on ESD protection can tell you a lot about them. I’ve seen a good few categories of hackers neglecting ESD protection – there’s the yet-inexperienced ones, ones with a devil-may-care attitude, or simply those of us lucky to live in a reasonably humid climate. But until we’re able to control the global weather, your best bet is to befriend some ESD diodes before you get stuck having to replace a microcontroller board firmly soldered into your PCB with help of 40 through-hole pin headers.

Humans are pretty good at generating electric shocks, and oftentimes, you’ll shock your hardware without even feeling the shock yourself. Your GPIOs will feel it, though, and it can propagate beyond just the input/output pins inside your chip. ESD events can be a cause of “weird malfunctions”, sudden hardware latchups, chips dying out of nowhere mid-work – nothing to wish for.

Worry not, though. Want to build hardware that survives? Take a look at ESD diodes, where and how to add them, where to avoid them, and the parameters you want to keep in mind. Oh and, I’ll also talk about all the fancy ways you can mis-use ESD diodes, for good and bad alike!

Continue reading “Hacker Tactic: ESD Diodes”

DIY laser microphone on cutting mat

Spy Tech: Build Your Own Laser Eavesdropper

Laser microphones have been around since the Cold War. Back in those days, they were a favorite tool of the KGB – allowing spies to listen in on what was being said in a room from a safe distance. This project by [SomethingAbtScience] resurrects that concept with a DIY build that any hacker worth their soldering iron can whip up on a modest budget. And let’s face it, few things are cooler than turning a distant window into a microphone.

At its core this hack shines a laser on a window, detects the reflected light, and picks up subtle vibrations caused by conversations inside the room. [SomethingAbtScience] uses an ordinary red laser (visible, because YouTube rules) and repurposes an amplifier circuit ripped from an old mic, swapping the capsule for a photodiode. The build is elegant in its simplicity, but what really makes it shine is the attention to detail: adding a polarizing filter to cut ambient noise and 3D printing a stabilized sensor mount. The output is still a bit noisy, but with some fine tuning – and perhaps a second sensor for differential analysis – there’s potential for crystal-clear audio reconstruction. Just don’t expect it to pass MI6 quality control.

While you probably won’t be spying on diplomats anytime soon, this project is a fascinating glimpse into a bygone era of physical surveillance. It’s also a reminder of how much can be accomplished with a laser pointer, some ingenuity, and the curiosity to see how far a signal can travel.

Continue reading “Spy Tech: Build Your Own Laser Eavesdropper”