South Australia Vs. Too Much Home Solar

Once upon a time, the consensus was that renewable energy was too expensive and in too sparse supply to be a viable power source to run our proud, electrified societies on. Since then, prices of solar panels have tanked, becoming more efficient along the way, and homeowners have been installing them on their rooftops in droves.

Where once it was thought we’d never have enough solar energy, in some cities, it’s becoming all too much. In South Australia, where solar output can be huge on a sunny day, electricity authorities are facing problems with grid stability, and are taking measures to limit solar output to the grid.

Isn’t More Usually Better?

The problem faced by South Australian utilities is one of how to properly control an electrical grid with many thousands of distributed power sources. Typically, in conventional modern power grids, voltage and frequency is controlled within set limits by carefully matching the supply from major power plants with the demand from users. Fast-response plants can be brought online to meet shortfalls, and switched off when demand drops, and everything hums along nicely.

Unfortunately, solar power isn’t so easy to throttle, and even less so when it’s coming from thousands of separate households each with their own rooftop install and an inverter to feed back into the grid. This has led to authorities contemplating measures such as charging homeowners to export energy to the grid in peak periods in an effort to slow the huge uptake of home solar systems. Export limits have also been proposed for suburbs with the highest concentration of home solar, as substations in certain residential areas struggle to cope under the huge inflows of energy. Continue reading “South Australia Vs. Too Much Home Solar”

Building An Oxygen Concentrator: It Isn’t Rocket Science

Back at the start of the pandemic, a variety of hacker designs for life-saving machinery may have pushed the boundaries of patient safety. There are good reasons that a ventilator must pass extensive safety  testing and certification before it can be attached to a patient, because were it to in some way fail, the patient would die. A year later, we have many much safer and more realistic ways to use our skills as part of the effort.

Probably one of the most ambitious projects comes from a coalition of Indian hackerspaces who are adapting a proven oxygen concentrator for local manufacture. Among them is Hackaday’s own [Anool Mahidharia], who hosts a Maker’s Asylum video (embedded below) explaining how the oxygen concentrator works and how they can be made safely.

The team have proven their ability in manufacturing over the past year, here showing off the M19 motorised air purifying respirator.
The team have proven their ability in manufacturing over the past year, here showing off the M19 motorised air purifying respirator.

An oxygen concentrator is both surprisingly simple and imbued with a touch of magic. At its center are two columns of zeolite, a highly porous aluminosilicate mineral that performs the task of a molecular sieve. When air is pumped into the column, the zeolite traps nitrogen, leaving the oxygen-enriched remnant to be supplied onwards. There are two such columns to allow each to be on an alternate cycle of enrichment or purging to remove the accumulated nitrogen.

The point of the video is to show that such a device can be constructed from readily available parts and with common tools; as the title says it isn’t rocket science. Concentrators produced by the hackerspace coalition won’t save the world on their own, but as a part of the combined effort they can provide a useful and reliable source of oxygen that will make a significant difference in a country whose oxygen distribution network is under severe strain.

We previously covered the Indian oxygen concentrator effort when they launched the project. Their website can be found on the Maker’s Asylum website, and their crowdfunding campaign can be found on the Indian crowdfunding platform, Ketto. They have already proved their ability to coordinate large-scale manufacturing with their previous PPE and respirator projects, so please consider supporting them if you can. Meanwhile, we can’t help a twinge of space envy, from the fleeting glimpse of Maker’s Asylum in the video.

Continue reading “Building An Oxygen Concentrator: It Isn’t Rocket Science”

Mobile Electronics Workstation Has It All In A Small Package

Home is absolutely everything these days. Plenty of spaces around the abode have had to do double and triple duty as we navigate work, play, and everything in between. Although it’s been a great time to engage in hobbies and even find new ones, where exactly are we supposed put all the stuff that accumulates?

[Fabse89] needed a portable, usable solution for doing electronics work that could be easily packed away. They happened upon a tool case being thrown out, and repurposed it into a great one-stop solution for whenever the urge to play with pixies strikes.

[Fabse89] started by stripping the box out to the bare walls and modeling the inside in Fusion360. Then they built and cut an acrylic insert that holds two power supplies and a soldering station. There are fixed 5 V and 12 V outputs on one power supply, plus a variable supply that maxes out at 48 V.

When it came to tool storage options, [Fabse89] got lucky with a small, seldom-used set of plastic drawers that fits perfectly next to the power station. These hold all the small tools like flush cutters, pliers, and a de-soldering pump. The top section of the case folds back and is the perfect place for component storage boxes. We think this is a tidy solution and especially like that you don’t have to dismantle it to use it — can be used with everything in place and packed up quickly. We also like that the front lid pulls down into a makeshift table, so this really could go anywhere with mains power.

Acrylic not rugged enough for your tastes? Here’s a DIY supply that doubles as a melee weapon.

PHP Gets A Demoscene Engine Of Its Very Own

When we think demoscene, our first thought is typically of 80s computers, particularly the Commodore 64 and Amiga 500 which were widely regarded as the awesomest of their time. However, you can write a demo on any platform you wish, and [OxABADCAFE] has done just that – in PHP.

Pretty, no?

Going by PDE, standing for Pointless, Portable, or PHP Demo Engine, the code is available on GitHub for the curious. The code is set up for RGB ASCII terminal output, for a beautifully old-school aesthetic. Demo sequences can be programmed in JSON files, with the code executing a default in-built demo if none is provided.

There’s no audio yet, so you’ll have to cool your thumping chiptune jets until that’s available in a later release. With that said, we look forward to more development expanding what can be done with the engine – after all, there’s nothing more demoscene than pushing the limits. Video after the break.

Continue reading “PHP Gets A Demoscene Engine Of Its Very Own”

Ello Is A Tiny Computer With A C — Interpreter?

When we talk about a retrocomputer, it’s our normal practice to start with the hardware. But with [KnivD]’s ELLO 1A while the hardware is interesting enough it’s not the stand-out feature. We are all used to microcomputers with a BASIC interpreter, but how many have we seen with a C interpreter? The way C works simply doesn’t lend itself to anything but a compiler and linker, so even with a pared-down version of the language it still represents a significant feat to create a working interpreter.

The hardware centres around a PIC32MX, and has onboard SD card, VGA, sound, and a PS/2 keyboard port. The PCB is a clever design allowing construction with either through-hole or surface-mount components to allow maximum accessibility for less advanced solderers. Full information can be found on the project’s website, but sadly for those wanting an easy life only the PCB is as yet available for purchase.

We’re privileged to see a huge array of retrocomputing projects here at Hackaday, but while they’re all impressive pieces of work it’s rare for one to produce something truly unexpected. This C interpreter certainly isn’t something we’ve seen before, so we’re intrigued to see what projects develop around it.

Hackaday Links Column Banner

Hackaday Links: May 9, 2021

Well, that de-escalated quickly. It seems like no sooner than a paper was announced that purported to find photographic evidence of fungi growing on Mars, that the planetary science and exobiology community came down on it like a ton of bricks. As well they should — extraordinary claims require extraordinary evidence, and while the photos that were taken by Curiosity and Opportunity sure seem to show something that looks a lot like a terrestrial puffball fungus, there are a lot of other, more mundane ways to explain these formations. Add to the fact that the lead author of the Martian mushroom paper is a known crackpot who once sued NASA for running over fungi instead of investigating them; the putative shrooms later turned out to be rocks, of course. Luckily, we have a geobiology lab wandering around on Mars right now, so if there is or was life on Mars, we’ll probably find out about it. You know, with evidence.

If you’re a fan of dystopic visions of a future where bloodthirsty robots relentlessly hunt down the last few surviving humans, the news that the New York Police Department decided to stop using their “DigiDog” robot will be a bit of a downer. The move stems from outrage generated by politicians and citizens alike, who dreamt up all sorts of reasons why the NYPD shouldn’t be using this tool. And use it they apparently did —  the original Boston Dynamics yellow showing through the many scuffs and dings in the NYPD blue paint job means this little critter has seen some stuff since it hit the streets in late 2020. And to think — that robot dog was only a few weeks away from filing its retirement papers.

Attention, Commodore fans based in Europe: the Commodore Users Europe event is coming soon. June 12, to be precise. As has become traditional, the event is virtual, but it’s free and they’re looking for presenters.

In a bid to continue the grand Big Tech tradition of knowing what’s best for everyone, Microsoft just announced that Calibri would no longer be the default font in Office products. And here’s the fun part: we all get to decide what the new default font will be, at least ostensibly. The font wonks at Microsoft have created five new fonts, and you can vote for your favorite on social media. The font designers all wax eloquent on their candidates, and there are somewhat stylized examples of each new font, but what’s lacking is a simple way to judge what each font would actually look like on a page of English text. Whatever happened to “The quick brown fox” or even a little bit of “Lorem ipsum”?

And finally, why are German ambulances — and apparently, German medics — covered in QR codes? Apparently, it’s a way to fight back against digital rubberneckers. The video below is in German, but the gist is clear: people love to stop and take pictures of accident scenes, and smartphones have made this worse, to the point that emergency personnel have trouble getting through to give aid. And that’s not to mention the invasion of privacy; very few accident victims are really at their best at that moment, and taking pictures of them is beyond rude. Oh, and it’s illegal, punishable by up to two years in jail. The idea with the QR codes is to pop up a website with a warning to the rubbernecker. Our German is a bit rusty, but we’re pretty sure that translates to, “Hey idiot, get back in your frigging car!” Feel free to correct us on that.

[Editor’s note: “Stop. Rubbernecking kills”.]

Artwork Spans Fifty Years Of Display Technology

Swiss artist and designer [Jürg Lehni] was commissioned to create an artwork called Four Transitions which has been installed in the HeK (House of electronics Arts) in Basel. This piece visually depicts the changes in technologies used by public information displays, such as those in airports and train stations. As the title of the installation suggests, four different technologies are represented:

  • Flip-Dot, early 1960s, 15 each 7 x 7 modules arrayed into a 21 x 35 pixel panel
  • LCD, 1970s and 1980s, two each 36 x 52 modules arrayed into 52 x 76 pixel panel
  • LED, 2000s, six each 16 x 16 RGB modules arrayed into a 32 x 48 pixel panel
  • TFT, current, one 24 inch module, 1200 x 1920 pixel panel

The final work is quite striking, but equally interesting is the summary of the the design and construction process that [Jürg] provides on Twitter. We hope he expands this into a future, more detailed writeup — if only to learn about reverse engineering the 20 year old LCD controller whose designer was in retirement. His tweets also gives us a tantalizing glimpse into the software, controllers, and interconnections used to drive all these displays. There is quite a lot of interesting engineering going on in the background, and we look forward to future documentation from [Jürg].

You may recognize [Jürg] as the creator of Hektor, a graffiti output device from 2002 which we’ve referenced over the years in Hackaday. Check out the short video below of the displays in operation, and be sure to unmute the volume so you can listen to the satisfying sound of 735 flip-dots changing state. [Jürg] also gives in interview about the project in the second video below. Thanks to [Niklas Roy] for sending in the tip about this most interesting exhibition.

Continue reading “Artwork Spans Fifty Years Of Display Technology”