Resolution: Share Inspiration

It’s been a good 2025 so far! I just got back from Chaos Communication Congress, which is easily my favorite gigantic hacker conference of the year. (Partisan Hackaday pride puts Supercon up as my favorite moderate-sized conference, naturally.) CCC is huge. And it’s impossible to leave an event like that without your to-hack list at least doubling in length.

And then I got back home and started prepping up for the podcast, which meant reading through about a week’s worth of Hackaday in a single sitting. Which in turn adds a few more projects to the list. Thanks for that, y’all!

All of this was possible because people who do crazy nerdy things decided to share their passions with everyone. So in the spirit of the New Year, I’m going to try to document my own projects a little bit better, because if people can’t see what you’re doing, they can’t get inspired by it.

And while it’s my day job, it’s not yours, so I’d like to encourage you to point out a cool project if you see it as well. Because what’s better than inspiring other hackers to pick up the torch on a project you love?

FallingWater Clock Puts New Spin On A Common LCD

Sometimes, all it takes is looking at an existing piece of tech in a new way to come up with something unique. That’s the whole idea behind FallingWater, a gorgeous Art Deco inspired clock created by [Mark Wilson] — while the vertical LCD might look like some wild custom component, it’s simply a common DM8BA10 display module that’s been rotated 90 degrees.

As demonstrated in the video below, by turning the LCD on its side, [Mark] is able to produce some visually striking animations. At the same time the display is still perfectly capable of showing letters and numbers, albeit in a single column and with noticeably wider characters.

In another application it might look odd, but when combined with the “sunburst” style enclosure, it really comes together. Speaking of the enclosure, [Mark] used OpenSCAD to visualize the five layer stack-up, which was then recreated in Inkscape so it could ultimately be laser-cut from acrylic.

Rounding out the build is a “Leonardo Tiny” ATmega32U4 board, a DS3221 real-time clock (RTC), a couple of pushbuttons, and a light dependent resistor (LDR) used to dim the display when the ambient light level is low. All of the electronics are housed on a small custom PCB, making for a nicely compact package.

This build is as simple as it is stylish, and we wouldn’t be surprised if it inspired more than a few clones. At the time of writing, [Mark] hadn’t published the source code for the ATmega, but he has provided the code to generate the cut files for the enclosure, as well as the Gerber files for the PCB. If you come up with your own version of this retro-futuristic timepiece, let us know.

Continue reading “FallingWater Clock Puts New Spin On A Common LCD”

PCB Motor Holds Fast, Even After 1.6 Billion Spins

If you aren’t up to date with [Carl Bugeja]’s work with tiny brushless PCB motors, his summary video of his latest design and all the challenges it involved is an excellent overview.

Back in 2018 we saw [Carl]’s earliest versions making their first spins and it was clear he was onto something. Since then they have only improved, but improvement takes both effort and money. Not only does everything seemingly matter at such a small scale, but not every problem is even obvious in the first place. Luckily, [Carl] has both the determination and knowledge to refine things.

Hardware development is expensive, especially when less than a tenth of a millimeter separates a critical component from the junk pile.

The end result of all the work is evident in his most recent test bed: an array of twenty test motors all running continuously at a constant speed of about 37,000 RPM. After a month of this, [Carl] disassembled and inspected each unit. Each motor made over 53 million rotations per day, closing out the month at over 1.6 billion spins. Finding no sign of internal scratches or other damage, [Carl] is pretty happy with the results.

These motors are very capable but are also limited to low torque due to their design, so a big part of things is [Carl] exploring and testing different possible applications. A few fun ones include a wrist-mounted disc launcher modeled after a Spider-Man web shooter, the motive force for some kinetic art, a vibration motor, and more. [Carl] encourages anyone interested to test out application ideas of their own. Even powering a micro drone is on the table, but will require either pushing more current or more voltage, both of which [Carl] plans to explore next.

Getting any ideas? [Carl] offers the MotorCell for sale to help recover R&D costs but of course the design is also open source. The GitHub repository contains code and design details, so go ahead and make them yourself. Or better yet, integrate one directly into your next PCB.

Got an idea for an application that would fit a motor like this? Don’t keep it to yourself, share in the comments.

Continue reading “PCB Motor Holds Fast, Even After 1.6 Billion Spins”

Origami-Inspired, Self-locking Structures With 3D Printing

Researchers recently shared details on creating foldable, self-locking structures by using multi-material 3D printing. These origami-inspired designs can transition between flat and three-dimensional forms, locking into place without needing external support or fasteners.

The 3D structure of origami-inspired designs comes from mountain and valley fold lines in a flat material. Origami designs classically assume a material of zero thickness. Paper is fine, but as the material gets thicker things get less cooperative. This technique helps avoid such problems.

An example of a load-bearing thick-film structure.

The research focuses on creating so-called “thick-panel origami” that wraps rigid panels in a softer, flexible material like TPU. This creates a soft hinge point between panels that has some compliance and elasticity, shifting the mechanics of the folds away from the panels themselves. These hinge areas can also be biased in different ways, depending on how they are made. For example, putting the material further to one side or the other will mechanically bias that hinge to fold into either a mountain, or a valley.

Thick-panel origami made in this way paves the way towards self-locking structures. The research paper describes several different load-bearing designs made by folding sheets and adding small rigid pieces (which are themselves 3D printed) to act as latches or stoppers. There are plenty of examples, so give them a peek and see if you get any ideas.

We recently saw a breakdown of what does (and doesn’t) stick to what when it comes to 3D printing, which seems worth keeping in mind if one wishes to do some of their own thick-panel experiments. Being able to produce a multi-material object as a single piece highlights the potential for 3D printing to create complex and functional structures that don’t need separate assembly. Especially since printing a flat structure that can transform into a 3D shape is significantly more efficient than printing the finished 3D shape.

Exercise Wheel Tracker Confirms Suspicions About Cats

What do cats get up to in the 30 minutes or so a day that they’re awake? Being jerks, at least in our experience. But like many hackers, [Brent] wanted to quantify the activity of his cat, and this instrumented cat exercise wheel was the result.

To pull this off, [Brent] used what he had on hand, which was an M5Stack ESP32 module, a magnetic reed switch, and of course, the cat exercise wheel [Luna] seemed to be in the habit of using at about 4:00 AM daily. The wheel was adorned with a couple of neodymium magnets to trip the reed switch twice per revolution, with the pulse stream measured on one of the GPIOs. The code does a little debouncing of the switch and calculates the cat’s time and distance stats, uploading the data to OpenSearch for analysis and visualization. [Brent] kindly includes the code and the OpenSearch setup in case you want to duplicate this project.

As for results, they’re pretty consistent with what we’ve seen with similar cat-tracking efforts. A histogram of [Luna]’s activity shows that she does indeed hop on the wheel at oh-dark-thirty every day, no doubt in an effort to assassinate [Brent] via sleep deprivation. There’s also another burst of “zoomies” around 6:00 PM. But the rest of the day? Pretty much sleeping.

An homemade automated air freshener dispenser

GPS Enabled Pumpkin Spice Sprayer Knows When It’s PSL Season

Pumpkin spice, also known as allspice with better marketing, has found its way into a seemingly endless amount of products over the years. It goes beyond the obvious foodstuffs of pies and cakes; because there are plenty of candles, deodorants, and air fresheners ready to add a little more spice to your world. One such autumnal smell enthusiast, YouTube user [J-Knows], sought to automate the delivery mechanism with his 3D printed pumpkin spice aerosol sprayer.

The sprayer device uses an Arduino to rotate a small 3D printed arm that depresses the button on an air freshener cap. This design came as a result of multiple attempts to create a clip that would securely attach to a standard canister. When problems arose with the clip slipping out of place after the motor rotated, a pinch of sticky tack ended up being just the solution. With the proper amount of adhesion, the automated sprayer could now “pollute” any space it is in, as [J-Knows] described.

What took this project to another level is the addition of an Adafruit GPS module. It was coded to respond when it was within one mile of a Starbucks — arguably the organization responsible for the pumpkin spice craze. For some the company’s pumpkin spice latte (PSL) is synonymous with all things fall, and marks the beginning of the season when it is brought back to the coffee menu. Though not being a regular coffee drinker himself, [J-Knows] fully committed to the bit by taking his creation on a test trip to his local Starbucks for a PSL. Judging by the amount of pumpkin spice aerosol solution that ended up on his car dash, he is going to be smelling it into the next year.

Continue reading “GPS Enabled Pumpkin Spice Sprayer Knows When It’s PSL Season”

A replica LX System game console inspired by the UFO 50 video game sitting on a wooden desk next to a can of diet Coke.

UFO 50 Inspired LX System Looks Straight Out Of A Video Game

They simply don’t make them like they used to, and in the case of this retro LX system build, they only make what never existed in the first place. Earlier this year the long awaited video game UFO 50 released to widespread critical acclaim. The conceit of the game is an interactive anthology of a faux 1980’s game console constructed by a large group of actual indie game developers. Leave it to [Luke], who admitted to UFO 50 to taking over his life, to bring the LX system from the digital screen to the real world.

Each piece of the LX System case was printed on a multi-color filament capable Bambu Labs P1S. Dual XLR jacks wired up as USB serve as controller ports, and the controller itself is a repurposed NES style USB controller fitted with a new housing printed with the same filament as the case. Both the prominent front mounted power and “sys” buttons are functional; the latter actually switches to a new game within UFO 50. The brains of this project is a mini Windows PC hooked up to a 9 inch 720p LCD screen which is plenty enough resolution for pixelated look of the games. As impressive as replicating the whole case look is, it’s really brought together by the addition of a 3.5 inch floppy drive. It could be an interesting way to backup save files, provided they fit within 1.44 MB.

In addition to sharing the completed LX System, [Luke] has also made the print files available online along with a list of project materials used. It would be neat to see an alternate color scheme or remix for this working prototype of a console that never actually existed. In the meantime, there are plenty more games to play and discover in UFO 50…there’s 50 of them after all.

via Time Extension