Build A DIY Spinner To Get Your Tempest Game Going

These days, controls in games are fairly standardized by genre. Most RTSs, FPSs, and RPGs all control more or less the same way. But one type of controller that has fallen by the wayside is the paddle, or spinner. [jesster88] is a big Tempest fan, however, and a spinner is crucial. Thus, what else is there to do but whip up one’s own?

Tempest is one of the more difficult classic games to categorize.

The build is based around a wired optical mouse. It’s pulled apart, with its main PCB installed into a 3D printed enclosure. Inside, the optical sensor is pointed at the base of a spinner constructed out of a printed drum and an off-the-shelf knob. The spinner is installed in a skateboard-style bearing for smooth rotation. As it spins, the optical sensor detects the motion and reports it as mouse movement via USB.

[jesster88] uses the device for playing Tempest with MAME. We imagine the technique could be adapted to work with other games that rely on spinner or paddle inputs, too. Meanwhile, if you’re whipping up your own retro game hacks at home, don’t hesitate to let us know!

Spinning Magnets Do Your Dice Rolling For You

Dice are about the simplest machines possible, and they’ve been used since before recorded history to generate random numbers. But no machine is so simple that a little needless complexity can’t make it better, as is the case with this mechanical spinning dice. Or die. Whatever.

Inspiration for the project came from [Attoparsec]’s long history with RPG and tabletop games, which depend on different kinds of dice to generate the randomness that keeps them going — that and the fortuitous find of a seven-segment flip-dot display, plus the need for something cool to show off at OpenSauce. The flip-dot is controlled by an array of neodymium magnets with the proper polarity to flip the segments to the desired number. The magnets are attached to an aluminum disk, with each array spread out far enough to prevent interference. [Attoparsec] also added a ring of magnets to act as detents that lock the disk into a specific digit after a spin.

The finished product ended up being satisfyingly clicky and suitably random, and made a good impression at OpenSauce. The video below documents the whole design and build process, and includes some design dead-ends that [Attoparsec] went down in pursuit of a multiple-digit display. We’d love to see him revisit some of these ideas, mechanically difficult though they may be. And while he’s at it, maybe he could spice up the rolls with a little radioactivity.

Continue reading “Spinning Magnets Do Your Dice Rolling For You”

The SpinMeister, For A Perfect Pizza Every Time!

If you don’t happen to have a traditional stone-floored domed clay oven on hand, it can be surprisingly challenging to make a pizza that’s truly excellent. Your domestic oven does a reasonable job, but doesn’t really get hot enough. Even a specialist pizza oven such as [Yvo de Haas]’ Ooni doesn’t quite do the best possible, so he’s upgraded it with the SpinMeister — a system for precise timing of the heat, and controlled rotation of the cooking stone for an even result.

The spinning part is handled by a stepper motor, driving a hex shaft attached to the bottom of the stone through a chuck. The rotating bearing itself is from an aftermarket stone rotator kit. The controller meanwhile is a smart 3D printed unit with a vacuum-fluorescent display module, powered from an Arduino Nano. There’s a motor controller to handle driving the stepper, and an MP3 module for audible warning. It’s all powered from a USB-C powerbank, for true portability. He’s produced a video showing it cooking a rather tasty-looking flatbread, which we’ve placed below. Now for some unaccountable reason, we want pizza.

If you recognize [Yvo]’s name, then perhaps it’s because he’s appeared on these pages a few times. Whether it’s a tentacle robot or something genuinely different in 3D printing, his work never ceases to be interesting.

Continue reading “The SpinMeister, For A Perfect Pizza Every Time!”

Hack Your Own Adventure Story With Yarn Spinner

We are big fans of programmed texts for education. You know, the kind where you answer a question and go to a new page based on your answer. But they can also be entertaining “choose your own adventure” stories. You might say, “You are standing in front of an oak door, two meters high, with an iron handle. Do you a) open it? b) knock on it? c) ignore it?” Then, based on your answer, you go to a different part of the story. These are tough to write, but you can get some help using Yarn Spinner and the Yarn scripting language.

The original purpose of Yarn is to produce conversations for games. There’s a tutorial for that. The difference is to produce a book, you get a choose your own adventure PDF at the end. For the tutorial, you can try to read the text on the left-hand side of the editor or just press Test (at the top) and let it “read” the tutorial to you, which is a little more fluid.

Continue reading “Hack Your Own Adventure Story With Yarn Spinner”

Photo Shows Real Spiders From Mars

A cornerstone of early 1970s rock music culture was the British singer David Bowie in his Ziggy Stardust persona, along with his backing band the Spiders from Mars. You can tell that the PR department at the European Space Agency were beside themselves with glee at the opportunity to reference them when their Mars Express spacecraft snapped a picture of some of the planets surface structures which bear a passing resemblance to Earth-bound spiders. We can’t blame them, we’d have done the same.

While these spiders are definitely not arachnid in origin, they are no less interesting. Over the Martian winter there form layers of carbon dioxide ice, which turn to gas under the influence of the Sun. This gas becomes trapped underneath layers of ice, until it forms sufficient pressure to burst through and escape. In doing so it brings up dark dust which settles along fissures in the ice, leading to the spider-like patterns when viewed from orbit.

So no life on Mars then, at least as yet. But it’s an interesting observation, and another little piece in the puzzle of understanding our planetary neighbor, as well as an excuse for a classic rock earworm. Meanwhile, this isn’t the first time we’ve reported on the ESA Mars probes.

Hackaday Podcast Episode 267: Metal Casting, Plasma Cutting, And A Spicy 555

What were some of the best posts on Hackaday last week? Elliot Williams and Al Williams decided there were too many to choose from, but they did take a sampling of the ones that caught their attention. This week’s picks were an eclectic mix of everything from metal casting and plasma cutters to radio astronomy and space telescope budgets. In between? Some basic circuit design, 3D printing, games, dogs, and software tools. Sound confusing? It won’t be, after you listen to this week’s podcast.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Download an audiophile-quality oxygen-free MP3 file here.

Continue reading “Hackaday Podcast Episode 267: Metal Casting, Plasma Cutting, And A Spicy 555”

Delays And Timers In LTSpice (no 555)

If you need a precise time, you could use a microcontroller. Of course, then all your friends will say “Could have done that with a 555!” But the 555 isn’t magic — it uses a capacitor and a comparator in different configurations to work. Want to understand what’s going on inside? [Mano Arrostita] has a video about simulating delay and timer circuits in LTSpice.

The video isn’t specifically about the 555, but it does show how the basic circuits inside a timer chip work. The idea is simple: a capacitor will charge through a resistor with an exponential curve. If you prefer, you can charge with a constant current source and get a nice linear charge.

You can watch the voltage as the capacitor charges and when it reaches a certain point, you know a certain amount of time has passed. The discharge works the same way, of course.

We like examining circuits for learning with a simulator, either LTSpice or something like Falstad. It is easier than breadboarding and encourages making changes that would be more difficult on a real breadboard. If you want a refresher on LTSpice or current sources, you can kill two birds with one stone.

Continue reading “Delays And Timers In LTSpice (no 555)”